使用python绘制二元函数图像的实例

废话少说,直接上代码:

#coding:utf-8
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

def function_2(x,y):
   #  这里的函数可以任意定义

   return np.sum(x**2) 

fig = plt.figure()
ax = Axes3D(fig)
x = np.arange(-3,-3,0.1)
y = np.arange(-3,-3,0.1)
X,Y = np.meshgrid(x,y)#创建网格,这个是关键
Z = function_2(X,Y)
plt.xlabel('x')
plt.ylabel('y')

ax.plot_surface(X,Y,Z,rstride=1,cstride=1,cmap='rainbow')
plt.show()

以上这篇使用python绘制二元函数图像的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python实现从文件中读取数据并绘制成 x y 轴图形的方法

    如下所示: import matplotlib.pyplot as plt import numpy as np def readfile(filename): dataList = [] dataNum = 0 with open(filename,'r') as f: for line in f.readlines(): linestr = line.strip('\n') if len(linestr) < 8 and len(linestr) >1: dataList.append(f

  • python matplotlib实现双Y轴的实例

    如下所示: import matplotlib.pyplot as plt import numpy as np x = np.arange(0., np.e, 0.01) y1 = np.exp(-x) y2 = np.log(x) fig = plt.figure() ax1 = fig.add_subplot(111) ax1.plot(x, y1,'r',label="right"); ax1.legend(loc=1) ax1.set_ylabel('Y values for

  • python画双y轴图像的示例代码

    很多时候可能需要在一个图中画出多条函数图像,但是可能y轴的物理含义不一样,或是数值范围相差较大,此时就需要双y轴. matplotlib和seaborn都可以画双y轴图像. 一个例子: import seaborn as sns import matplotlib.pyplot as plt # ax1 for KDE, ax2 for CDF f, ax1 = plt.subplots() ax1.grid(True) # ax1.set_ylim(0, 1) ax1.set_ylabel('

  • 使用python绘制二元函数图像的实例

    废话少说,直接上代码: #coding:utf-8 import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D def function_2(x,y): # 这里的函数可以任意定义 return np.sum(x**2) fig = plt.figure() ax = Axes3D(fig) x = np.arange(-3,-3,0.1) y = np.arange(-3,

  • 利用Python NumPy库及Matplotlib库绘制数学函数图像

    目录 前言 NumPy与Matplotlib 函数绘图 所需库函数语法 导入所需模块 一元一次函数 一元二次函数 指数函数 正弦函数 余弦函数 高级玩法 总结 前言 最近开始学习数学了,有一些题目的函数图像非常有特点,有一些函数图像手绘比较麻烦,那么有没有什么办法做出又标准又好看的数学函数图像呢? 答案是有很多的,有很多不错的软件都能画出函数图像,但是,我想到了Python的数据可视化.Python在近些年非常火热,在数据分析以及深度学习等方面得到广泛地运用,其丰富的库使其功能愈加强大. 这里我

  • Python获取当前函数名称方法实例分享

    本文实例主要是Python中获取当前运行函数的名称,具体如下. python 具有强大的自省能力,在函数运行时,可以在函数内部获取到当前所在的函数名称,请看示例代码 #coding=utf-8 import sys import inspect def my_name(): print '1' ,sys._getframe().f_code.co_name print '2' ,inspect.stack()[0][3] def get_current_function_name(): prin

  • python中set()函数简介及实例解析

    set函数也是python内置函数的其中一个,属于比较基础的函数.其具体介绍和使用方法,下面进行介绍. set() 函数创建一个无序不重复元素集,可进行关系测试,删除重复数据,还可以计算交集.差集.并集等. set,接收一个list作为参数 list1=[1,2,3,4] s=set(list1) print(s) #逐个遍历 for i in s: print(i) 输出: set([1, 2, 3, 4]) 1 2 3 4 使用add(key)往集合中添加元素,重复的元素自动过滤 list1

  • python绘制多个子图的实例

    绘制八个子图 import matplotlib.pyplot as plt fig = plt.figure() shape=['.','o','v','>','<','8','s','*'] for j in range(8): x=[i for i in range(6)] y=[i**2 for i in range(6)] ax = fig.add_subplot(241+j) ax.scatter(x,y,c='r',marker=shape[j]) ax.set_title('第

  • python实现在函数图像上添加文字和标注的方法

    如下所示: import matplotlib.pyplot as plt import numpy as np from matplotlib import font_manager #先确定字体,以免无法识别汉字 my_font = font_manager.FontProperties(fname= "C:/Windows/Fonts/msyh.ttc") X=np.linspace(-np.pi,np.pi,100) plt.figure(figsize=(6,5)) Y_x2

  • 在python中画正态分布图像的实例

    1.正态分布简介 正态分布(normal distribtution)又叫做高斯分布(Gaussian distribution),是一个非常重要也非常常见的连续概率分布.正态分布大家也都非常熟悉,下面做一些简单的介绍. 假设随机变量XX服从一个位置参数为μμ.尺度参数为σσ的正态分布,则可以记为: 而概率密度函数为 2.在python中画正态分布直方图 先直接上代码 import numpy as np import matplotlib.mlab as mlab import matplot

  • python 梯度法求解函数极值的实例

    如下所示: #coding utf-8 a=0.001 #定义收敛步长 xd=1 #定义寻找步长 x=0 #定义一个种子x0 i=0 #循环迭代次数 y=0 dic={} import math def f(x): y=math.sin(x) #定义函数f(X)=sinx return y def fd(x): y=math.cos(x) #函数f(x)导数fd(X)=cosx return y while y>=0 and y<3.14*4: y=y+xd x=y while abs(fd(

  • Python绘制股票移动均线的实例

    1. 前沿 移动均线是股票最进本的指标,本文采用numpy.convolve计算股票的移动均线 2. numpy.convolve numpy.convolve(a, v, mode='full') Returns the discrete, linear convolution of two one-dimensional sequences. The convolution operator is often seen in signal processing, where it model

  • Python中return函数返回值实例用法

    在学习return函数时候,还是要知道了解它最主要的函数作用,比如,怎么去实现返回一个值,另外还有就是我们经常会用到的使用return能够进行多值输出,这才是我们需要抓住知识的重点,针对上述所提及的内容,都可以来往下看文章,答案都在文章内容获取哦~ return 添加返回值 return 显示返回对象 返回值接受:value = func() 例子:计算学成最高分 listv = [90,80,88,77,66] # 分数计算return高分 def scoreCalculate(values)

随机推荐