仅利用30行Python代码来展示X算法

假如你对数独解法感兴趣,你可能听说过精确覆盖问题。给定全集 X 和 X 的子集的集合 Y ,存在一个 Y 的子集 Y*,使得 Y* 构成 X 的一种分割。

这儿有个Python写的例子。

X = {1, 2, 3, 4, 5, 6, 7}
Y = {
  'A': [1, 4, 7],
  'B': [1, 4],
  'C': [4, 5, 7],
  'D': [3, 5, 6],
  'E': [2, 3, 6, 7],
  'F': [2, 7]}

这个例子的唯一解是['B', 'D', 'F']。

精确覆盖问题是NP完备(译注:指没有任何一个够快的方法可以在合理的时间内,意即多项式时间 找到答案)。X算法是由大牛高德纳发明并实现。他提出了一种高效的实现技术叫舞蹈链,使用双向链表来表示该问题的矩阵。

然而,舞蹈链实现起来可能相当繁琐,并且不易写地正确。接下来就是展示Python奇迹的时刻了!有天我决定用Python来编写X 算法,并且我想出了一个有趣的舞蹈链变种。
算法

主要的思路是使用字典来代替双向链表来表示矩阵。我们已经有了 Y。从它那我们能快速的访问每行的列元素。现在我们还需要生成行的反向表,换句话说就是能从列中快速访问行元素。为实现这个目的,我们把X转换为字典。在上述的例子中,它应该写为

X = {
  1: {'A', 'B'},
  2: {'E', 'F'},
  3: {'D', 'E'},
  4: {'A', 'B', 'C'},
  5: {'C', 'D'},
  6: {'D', 'E'},
  7: {'A', 'C', 'E', 'F'}}

眼尖的读者能注意到这跟Y的表示有轻微的不同。事实上,我们需要能快速删除和添加行到每列,这就是为什么我们使用集合。另一方面,高德纳没有提到这点,实际上整个算法中所有行是保持不变的。

以下是算法的代码。

def solve(X, Y, solution=[]):
  if not X:
    yield list(solution)
  else:
    c = min(X, key=lambda c: len(X[c]))
    for r in list(X[c]):
      solution.append(r)
      cols = select(X, Y, r)
      for s in solve(X, Y, solution):
        yield s
      deselect(X, Y, r, cols)
      solution.pop()

def select(X, Y, r):
  cols = []
  for j in Y[r]:
    for i in X[j]:
      for k in Y[i]:
        if k != j:
          X[k].remove(i)
    cols.append(X.pop(j))
  return cols

def deselect(X, Y, r, cols):
  for j in reversed(Y[r]):
    X[j] = cols.pop()
    for i in X[j]:
      for k in Y[i]:
        if k != j:
          X[k].add(i)

真的只有 30 行!
格式化输入

在解决实际问题前,我们需要将输入转换为上面描述的格式。可以这样简单处理

X = {j: set(filter(lambda i: j in Y[i], Y)) for j in X}

但这样太慢了。假如设 X 大小为 m,Y 的大小为 n,则迭代次数为 m*n。在这例子中的数独格子大小为 N,那需要 N^5 次。我们有更好的办法。

X = {j: set() for j in X}
for i in Y:
  for j in Y[i]:
    X[j].add(i)

这还是 O(m*n) 的复杂度,但是是最坏情况。平均情况下它的性能会好很多,因为它不需要遍历所有的空格位。在数独的例子中,矩阵中每行恰好有 4 个条目,无论大小,因此它有N^3的复杂度。
优点

  • 简单: 不需要构造复杂的数据结构,所有用到的结构Python都有提供。
  • 可读性: 上述第一个例子是直接从Wikipedia上的范例直接转录下来的!
  • 灵活性: 可以很简单得扩展来解决数独。

求解数独

我们需要做的就是把数独描述成精确覆盖问题。这里有完整的数独解法代码,它能处理任意大小,3×3,5×5,即使是2×3,所有代码少于100行,并包含doctest!(感谢Winfried Plappert 和 David Goodger的评论和建议)

(0)

相关推荐

  • python简单实现基数排序算法

    本文实例讲述了python简单实现基数排序算法.分享给大家供大家参考.具体实现方法如下: from random import randint def main(): A = [randint(1, 99999999) for _ in xrange(9999)] for k in xrange(8): S = [ [] for _ in xrange(10)] for j in A: S[j / (10 ** k) % 10].append(j) A = [a for b in S for a

  • python实现bucket排序算法实例分析

    本文实例讲述了python实现bucket排序算法.分享给大家供大家参考.具体实现方法如下: def bucketSort(a, n, buckets, m): for j in range(m): buckets[j] = 0 for i in range(n): buckets[a[i]] += 1 i = 0 for j in range(m): for k in range(buckets[j]): a[i] = j i += 1 希望本文所述对大家的Python程序设计有所帮助.

  • python实现马耳可夫链算法实例分析

    本文实例讲述了python实现马耳可夫链算法的方法.分享给大家供大家参考.具体分析如下: 在<程序设计实践>(英文名<The Practice of Programming>)的书中,第三章分别用C语言,C++,AWK和Perl分别实现了马耳可夫链算法,来通过输入的文本,"随机"的生成一些有用的文本. 说明: 1. 程序使用了字典,字典和散列可不是一个东西,字典是键值对的集合,而散列是一种能够常数阶插入,删除,不过可以用散列来实现字典. 2. 字典的setdef

  • Python实现二分查找算法实例

    本文实例讲述了Python实现二分查找算法的方法.分享给大家供大家参考.具体实现方法如下: #!/usr/bin/env python import sys def search2(a,m): low = 0 high = len(a) - 1 while(low <= high): mid = (low + high)/2 midval = a[mid] if midval < m: low = mid + 1 elif midval > m: high = mid - 1 else:

  • Python版微信红包分配算法

    红包分配算法代码实现发给大家,祝红包大丰收! #coding=gbk import random import sys #print random.randint(0, 99) #print "====", random.uniform(0, 0.99) def calRandomValue(min, max, total, num): print min, max, total, num total = float(total) num = int(num) min = 0.01 i

  • python实现的DES加密算法和3DES加密算法实例

    本文实例讲述了python实现的DES加密算法和3DES加密算法.分享给大家供大家参考.具体实现方法如下: ############################################################################# # Documentation # ############################################################################# # Author: Todd Whitema

  • Python二分法搜索算法实例分析

    本文实例分析了Python二分法搜索算法.分享给大家供大家参考.具体分析如下: 今天看书时,书上提到二分法虽然道理简单,大家一听就明白但是真正能一次性写出别出错的实现还是比较难的,即使给了你充足的时间,比如1小时.如果你不是特别认真的话,可能还是会出一些这样那样的错误,所以就尝试了自己去实现一下,看能否一次通过,结果自然不言而喻,虽然用的时间不长,但是我失败了,呵呵. 个人觉得失败的最主要原因是自己没有认真的先想好这个思路和可能出现的分支情况,而是直接凭主观臆想就去写代码了,完全正中书上所说的行

  • 在Python中实现贪婪排名算法的教程

    在较早的一遍文章中,我曾经提到过我已经写了一个属于自己的排序算法,并且认为需要通过一些代码来重新回顾一下这个排序算法. 对于我所完成的工作,我核实并且保证微处理器的安全.对非常复杂的CPU进行测试的一个方法就是创建该芯片的另一个模型,其可以用来产生在CPU上运行的伪随机指令流.这所谓的ISG(指令流产生器)能够在很短的时间内创建几千(甚至几百万)个这样的测试,通过某种方式,使其可以巧妙地给出一些对将在CPU上执行的指令流的控制或操纵. 现在对这些指令流进行模拟,可以通过每一个测试实例花费的时间获

  • Python基于DES算法加密解密实例

    本文实例讲述了Python基于DES算法加密解密实现方法.分享给大家供大家参考.具体实现方法如下: #coding=utf-8 from functools import partial import base64 class DES(object): """ DES加密算法 interface: input_key(s, base=10), encode(s), decode(s) """ __ip = [ 58,50,42,34,26,18,

  • python实现数独算法实例

    本文实例讲述了python实现数独算法的方法.分享给大家供大家参考.具体如下: # -*- coding: utf-8 -*- ''' Created on 2012-10-5 @author: Administrator ''' from collections import defaultdict import itertools a = [ [ 0, 7, 0, 0, 0, 0, 0, 0, 0], #0 [ 5, 0, 3, 0, 0, 6, 0, 0, 0], #1 [ 0, 6, 2

随机推荐