Python机器学习从ResNet到DenseNet示例详解

目录
  • 从ResNet到DenseNet
  • 稠密块体
  • 过渡层
  • DenseNet模型
  • 训练模型

从ResNet到DenseNet

上图中,左边是ResNet,右边是DenseNet,它们在跨层上的主要区别是:使用相加和使用连结。

最后,将这些展开式结合到多层感知机中,再次减少特征的数量。实现起来非常简单:我们不需要添加术语,而是将它们连接起来。DenseNet这个名字由变量之间的“稠密连接”而得来,最后一层与之前的所有层紧密相连。稠密连接如下图所示:

稠密网络主要由2部分构成:稠密块(dense block)和过渡层(trainsition block)。

前者定义如何连接输入和输出,而后者则控制通道数量,使其不会太复杂。

稠密块体

DenseNet使用了ResNet改良版的“批量归一化、激活和卷积”结构。我们首先实现下这个结构。

import torch
from torch import nn
from d2l import torch as d2l

def conv_block(input_channels, num_channels):
	return nn.Sequential(
		nn.BatchNorm2d(input_channels), nn.ReLU(),
		nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1)
	)

一个稠密块由多个卷积块组成,每个卷积块使用相同矢量的输出通道。然而,在前向传播中,我们将每个卷积块的输入和输出在通道维上连结。

class DenseBlock(nn.Module):
	def __init__(self, num_convs, input_channels, num_channels):
		super(Denseblock, self).__init__()
		layer = []
		for i in range(num_convs):
			layer.append(conv_block(num_channels * i + input_channels, num_channels))
		self.net = nn.Sequential(*layer)

	def forward(self, X):
		for blk in self.net:
			Y = blk(X)
			# 连结通道维度上的每个块的输入和输出
			X = torch.cat((X, Y), dim=1)
		return X

在下面的例子中,我们定义一个有2个输出通道数为10的DenseBlock。使用通道数为3的输入时,我们会得到通道数为 3 + 2 × 10 = 23 3+2\times10=23 3+2×10=23的输出。卷积块的通道数控制了输出通道数相对于输入通道数的增长,因此也被称为增长率(growth rate)。

blk = DenseBlock(2, 3, 10)
X = torch.randn(4, 3, 8, 8)
Y = blk(X)
Y.shape
torch.Size([4, 23, 8, 8])

过渡层

由于每个稠密快都会带来通道数的增加,使用过多则会过于复杂化模型。而过渡层可以用来控制模型复杂度。它通过 1×1卷积层来减小通道数,并使用步幅为2的平均汇聚层减半高和宽,从而进一步降低模型复杂度。

def transition_block(input_channels, num_channels):
	return nn.Sequential(
		nn.BatchNorm2d(input_channels), nn.ReLU(),
		nn.Conv2d(input_channels, num_channels, kernel_size=1)
		nn.AvgPool2d(kernel_size=2, stride=2)
	)

对上一个例子中稠密块的输出使用通道数为10的过渡层。此时输出的通道数减为10,高和宽均减半。

blk = transition_block(23, 10)
blk(Y).shape
torch.Size([4, 10, 4, 4])

DenseNet模型

我们来构造DenseNet模型。DenseNet首先使用同ResNet一样的单卷积层和最大聚集层。

b1 = nn.Sequential(
	nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
	nn.BatchNorm2d(64), nn.ReLU(),
	nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)

接下来,类似于ResNet使用的4个残差块,DenseNet使用的是4个稠密块。与ResNet类似,我们可以设置每个稠密块使用多少个卷积层。这里我们设成4,从而与之前的ResNet-18保持一致。稠密块里的卷积层通道数(即增长率)设置为32,所以每个稠密块将增加128个通道。

在每个模块之间,ResNet通过步幅为2的残差块减小高和宽,而DenseNet则使用过渡层来减半高和宽,并减半通道数。

# 'num_channels'为当前通道数
num_channels, growth_rate = 64, 32
num_convs_in_dense_blocks = [4, 4, 4, 4]
blks = []
for i, num_convs in enumerate(num_convs_in_dense_blocks):
	blks.append(DenseBlock(num_convs, num_channels, growth_rate))
	# 上一个稠密块的输出通道数
	num_channels += num_convs * growth_rate
	# 在稠密块之间添加一个转换层,使通道数量减半
	if i != len(num_convs_in_dense_blocks) - 1:
		blks.append(transition_block(num_channels, num_channels // 2))
		num_channels = num_channels // 2

与ResNet类似,最后接上全局汇聚层和全连接层来输出结果。

net = nn.Sequential(
	b1, *blks,
	nn.BatchNorm2d(num_channels), nn.ReLU(),
	nn.AdaptiveMaxPool2d((1, 1)),
	nn.Flatten(),
	nn.Linear(num_channels, 10)
)

训练模型

由于这里使用了比较深的网络,本节里我们将输入高和宽从224降到96来简化计算。

lr, num_epochs, batch_size = 0.1, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
loss 0.154, train acc 0.943, test acc 0.880
5506.9 examples/sec on cuda:0

以上就是Python机器学习从ResNet到DenseNet示例详解的详细内容,更多关于Python机器学习ResNet到DenseNet的资料请关注我们其它相关文章!

(0)

相关推荐

  • PyTorch实现ResNet50、ResNet101和ResNet152示例

    PyTorch: https://github.com/shanglianlm0525/PyTorch-Networks import torch import torch.nn as nn import torchvision import numpy as np print("PyTorch Version: ",torch.__version__) print("Torchvision Version: ",torchvision.__version__) _

  • pytorch教程resnet.py的实现文件源码分析

    目录 调用pytorch内置的模型的方法 解读模型源码Resnet.py 包含的库文件 该库定义了6种Resnet的网络结构 每种网络都有训练好的可以直接用的.pth参数文件 Resnet中大多使用3*3的卷积定义如下 如何定义不同大小的Resnet网络 定义Resnet18 定义Resnet34 Resnet类 网络的forward过程 残差Block连接是如何实现的 调用pytorch内置的模型的方法 import torchvision model = torchvision.models

  • 关于Keras Dense层整理

    我就废话不多说了,大家还是直接看代码吧! ''' Created on 2018-4-4 ''' keras.layers.core.Dense( units, #代表该层的输出维度 activation=None, #激活函数.但是默认 liner use_bias=True, #是否使用b kernel_initializer='glorot_uniform', #初始化w权重,keras/initializers.py bias_initializer='zeros', #初始化b权重 k

  • Keras实现DenseNet结构操作

    DenseNet结构在16年由Huang Gao和Liu Zhuang等人提出,并且在CVRP2017中被评为最佳论文.网络的核心结构为如下所示的Dense块,在每一个Dense块中,存在多个Dense层,即下图所示的H1-H4.各Dense层之间彼此均相互连接,即H1的输入为x0,输出为x1,H2的输入即为[x0, x1],输出为x2,依次类推.最终Dense块的输出即为[x0, x1, x2, x3, x4].这种结构个人感觉非常类似生物学里边的神经元连接方式,应该能够比较有效的提高了网络中

  • Python机器学习从ResNet到DenseNet示例详解

    目录 从ResNet到DenseNet 稠密块体 过渡层 DenseNet模型 训练模型 从ResNet到DenseNet 上图中,左边是ResNet,右边是DenseNet,它们在跨层上的主要区别是:使用相加和使用连结. 最后,将这些展开式结合到多层感知机中,再次减少特征的数量.实现起来非常简单:我们不需要添加术语,而是将它们连接起来.DenseNet这个名字由变量之间的"稠密连接"而得来,最后一层与之前的所有层紧密相连.稠密连接如下图所示: 稠密网络主要由2部分构成:稠密块(den

  • python机器学习Sklearn实战adaboost算法示例详解

    目录 pandas批量处理体测成绩 adaboost adaboost原理案例举例 弱分类器合并成强分类器 pandas批量处理体测成绩 import numpy as np import pandas as pd from pandas import Series,DataFrame import matplotlib.pyplot as plt data = pd.read_excel("/Users/zhucan/Desktop/18级高一体测成绩汇总.xls") cond =

  • Python人工智能构建简单聊天机器人示例详解

    目录 引言 什么是聊天机器人? 准备工作 创建聊天机器人 导入必要的库 定义响应集合 创建聊天机器人 运行聊天机器人 完整代码 结论 展望 引言 人工智能是计算机科学中一个非常热门的领域,近年来得到了越来越多的关注.它通过模拟人类思考过程和智能行为来实现对复杂任务的自主处理和学习,已经被广泛应用于许多领域,包括语音识别.自然语言处理.机器人技术.图像识别和推荐系统等. 本文将介绍如何使用Python构建一个简单的聊天机器人,以展示人工智能的基本原理和应用.我们将使用Python语言和自然语言处理

  • 对python 生成拼接xml报文的示例详解

    最近临时工作要生成xml报名,通过MQ接口发送.简单小程序. 自增长拼成xml报文 Test_001.py # encoding=utf-8 import time orderId = '' s1= "\n" # for ID in range(1,5): item1 = "<item>" + \ "<orderID>" + str(ID) + "</orderID>" + \ "

  • Python中bisect的用法及示例详解

    bisect是python内置模块,用于有序序列的插入和查找. 查找: bisect(array, item) 插入: insort(array,item) 查找 import bisect a = [1,4,6,8,12,15,20] position = bisect.bisect(a,13) print(position) # 用可变序列内置的insert方法插入 a.insert(position,13) print(a) 输出: 5 [1, 4, 6, 8, 12, 13, 15, 2

  • python实现三壶谜题的示例详解

    前言 有一个充满水的8品脱的水壶和两个空水壶(容积分别是5品脱和3品脱).通过将水壶完全倒满水和将水壶的水完全倒空这两种方式,在其中的一个水壶中得到4品脱的水. 一.算法思想 算法分析 采用的算法思想是将某个时刻水壶中水的数量看作一个状态,用一个长度为3的数组表示. 初始状态便为[8,0,0],再拓展他的下一结点的可能结构. 若下一结点的结构已经被拓展过了便放弃,若没有拓展过则加入拓展列表(open_list)中.然后递归上述操作. 直到拓展列表(open_list)为空或者找到目标为止. 思想

  • 人工智能学习pyTorch的ResNet残差模块示例详解

    目录 1.定义ResNet残差模块 ①各层的定义 ②前向传播 2.ResNet18的实现 ①各层的定义 ②前向传播 3.测试ResNet18 1.定义ResNet残差模块 一个block中,有两个卷积层,之后的输出还要和输入进行相加.因此一个block的前向流程如下: 输入x→卷积层→数据标准化→ReLU→卷积层→数据标准化→数据和x相加→ReLU→输出out 中间加上了数据的标准化(通过nn.BatchNorm2d实现),可以使得效果更好一些. ①各层的定义 ②前向传播 在前向传播中输入x,过

  • python计算机视觉opencv卡号识别示例详解

    目录 一.模板预处理 1.将模板设置为二值图 2.检测模板的轮廓 3.对模板轮廓排序,并将数字和轮廓一一对应,以字典存储 4.备注 二.图片预处理 1.初始化卷积核 2.图片预处理第一部分 3.图像预处理第二部分 三.轮廓处理 1.大轮廓过滤 2.小轮廓分割 模板图片如下: 需识别的图片如下: 一.模板预处理 1.将模板设置为二值图 2.检测模板的轮廓 3.对模板轮廓排序,并将数字和轮廓一一对应,以字典存储 排序的函数如下: 排序并存储: 4.备注 ①每一个数字对应的是二值图截出来的那个数字图的

  • python机器学习算法与数据降维分析详解

    目录 一.数据降维 1.特征选择 2.主成分分析(PCA) 3.降维方法使用流程 二.机器学习开发流程 1.机器学习算法分类 2.机器学习开发流程 三.转换器与估计器 1.转换器 2.估计器 一.数据降维 机器学习中的维度就是特征的数量,降维即减少特征数量.降维方式有:特征选择.主成分分析. 1.特征选择 当出现以下情况时,可选择该方式降维: ①冗余:部分特征的相关度高,容易消耗计算性能 ②噪声:部分特征对预测结果有影响 特征选择主要方法:过滤式(VarianceThreshold).嵌入式(正

  • python编程开发时间序列calendar模块示例详解

    目录 calendar模块 设置每周第一天-setfirstweekday 1.默认情况:礼拜一是第一天 2.设置任意一天 是否闰年-isleap 年份间的闰年数-leapdays(y1, y2) 星期几-weekday(year, month, day) monthrange(year, month) 月的日历矩阵-monthcalendar(year, month) 月的日历-prmonth(year, month, w, l) 年的日历-calendar.calendar(year) 格式

随机推荐