详解tryAcquire()、addWaiter()、acquireQueued()

本文实例为大家分享了tryAcquire()、addWaiter()、acquireQueued()的用法 ,供大家参考,具体内容如下

tryAcquire()

final boolean nonfairTryAcquire(int acquires) {
      final Thread current = Thread.currentThread();
      int c = getState();
      if (c == 0) {
        if (compareAndSetState(0, acquires)) {
          setExclusiveOwnerThread(current);
          return true;
        }
      }
      else if (current == getExclusiveOwnerThread()) {
        int nextc = c + acquires;
        if (nextc < 0) // overflow
          throw new Error("Maximum lock count exceeded");
        setState(nextc);
        return true;
      }
      return false;
    }

先判断state是否为0,如果为0就执行上面提到的lock方法的前半部分,通过CAS操作将state的值从0变为1,否则判断当前线程是否为exclusiveOwnerThread,然后把state++,也就是重入锁的体现,我们注意前半部分是通过CAS来保证同步,后半部分并没有同步的体现,原因是:后半部分是线程重入,再次获得锁时才触发的操作,此时当前线程拥有锁,所以对ReentrantLock的属性操作是无需加锁的。如果tryAcquire()获取失败,则要执行addWaiter()向等待队列中添加一个独占模式的节点。

addWaiter()

/**
   * Creates and enqueues node for current thread and given mode.
   *
   * @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared
   * @return the new node
   */
  private Node addWaiter(Node mode) {
    Node node = new Node(Thread.currentThread(), mode);
    // Try the fast path of enq; backup to full enq on failure
    Node pred = tail;
    if (pred != null) {
      node.prev = pred;
      if (compareAndSetTail(pred, node)) {
        pred.next = node;
        return node;
      }
    }
    enq(node);
    return node;
  }

这个方法的注释:创建一个入队node为当前线程,Node.EXCLUSIVE 是独占锁, Node.SHARED 是共享锁。
先找到等待队列的tail节点pred,如果pred!=null,就把当前线程添加到pred后面进入等待队列,如果不存在tail节点执行enq()

private Node enq(final Node node) {
    for (;;) {
      Node t = tail;
      if (t == null) { // Must initialize
        if (compareAndSetHead(new Node()))
          tail = head;
      } else {
        node.prev = t;
        if (compareAndSetTail(t, node)) {
          t.next = node;
          return t;
        }
      }
    }
  }

这里进行了循环,如果此时存在了tail就执行同上一步骤的添加队尾操作,如果依然不存在,就把当前线程作为head结点。
插入节点后,调用acquireQueued()进行阻塞

acquireQueued()

final boolean acquireQueued(final Node node, int arg) {
    boolean failed = true;
    try {
      boolean interrupted = false;
      for (;;) {
        final Node p = node.predecessor();
        if (p == head && tryAcquire(arg)) {
          setHead(node);
          p.next = null; // help GC
          failed = false;
          return interrupted;
        }
        if (shouldParkAfterFailedAcquire(p, node) &&
          parkAndCheckInterrupt())
          interrupted = true;
      }
    } finally {
      if (failed)
        cancelAcquire(node);
    }
  }

先获取当前节点的前一节点p,如果p是head的话就再进行一次tryAcquire(arg)操作,如果成功就返回,否则就执行shouldParkAfterFailedAcquire、parkAndCheckInterrupt来达到阻塞效果;

以上所述是小编给大家介绍的tryAcquire()、addWaiter()、acquireQueued()的用法详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!

(0)

相关推荐

  • 对python中的iter()函数与next()函数详解

    list.tuple等都是可迭代对象,我们可以通过iter()函数获取这些可迭代对象的迭代器.然后我们可以对获取到的迭代器不断使⽤next()函数来获取下⼀条数据.iter()函数实际上就是调⽤了可迭代对象的 __iter__ ⽅法. >>> li = [11, 22, 33, 44, 55] >>> li_iter = iter(li) >>> next(li_iter) 11 >>> next(li_iter) 22 >&g

  • 深入了解Python iter() 方法的用法

    今天我们来介绍下Python基础教程学习之iter() 方法另外的用法.据说很少有人知道这个用法! 一.上代码.学用法 我们都比较熟悉 iter(obj),会返现一个迭代器,如果 obj 不是可迭代对象,则会报错.但其实如果仔细看官方文档,会发现 iter() 方法其实是接受两个参数的,文档说明如下 iter(object[, sentinel]) sentinel 英文翻译为 哨兵. sentinel 参数是可选的,当它存在时,object 不再传入一个可迭代对象,而是一个可调用对象,通俗点说

  • response.getWriter().write()向前台打印信息乱码问题解决

    response.getWriter().write() 功能:向前台页面显示一段信息. 当在普通的url方式中,会生成一个新的页面来显示内容. 当在ajax的方式中,会在alert中显示内容. 使用response.getWriter().write() 乱码问题 解决方式: response.setContentType("text/html;charset=UTF-8"); response.getWriter().write("在此处传递要显示的内容!");

  • Python iter()函数用法实例分析

    本文实例讲述了Python iter()函数用法.分享给大家供大家参考,具体如下: python中的迭代器用起来非常灵巧,不仅可以迭代序列,也可以迭代表现出序列行为的对象,例如字典的键.一个文件的行,等等. 迭代器就是有一个next()方法的对象,而不是通过索引来计数.当使用一个循环机制需要下一个项时,调用迭代器的next()方法,迭代完后引发一个StopIteration异常. 但是迭代器只能向后移动.不能回到开始.再次迭代只能创建另一个新的迭代对象. 反序迭代工具:reversed()将返回

  • python 迭代器和iter()函数详解及实例

    python中迭代器和iter()函数 迭代器为类序列对象提供了一个类序列的接口.python的迭代无缝地支持序列对象,而且它还允许程序员迭代非序列类型,包括用户定义的对象.迭代器用起来很灵巧,你可以迭代不是序列但表现处序列行为的对象,例如字典的键.一个文件的行,等等.迭代器的作用如下: •提供了刻扩展的迭代器接口: •对列表迭代带来了性能上的增强: •在字典迭代中性能提升: •创建真正的迭代接口,而不是原来的随即对象访问: •与所有已经存在的用户定义的类以及扩展得模拟序列和映射的对象向后兼容:

  • 详解tryAcquire()、addWaiter()、acquireQueued()

    本文实例为大家分享了tryAcquire().addWaiter().acquireQueued()的用法 ,供大家参考,具体内容如下 tryAcquire() final boolean nonfairTryAcquire(int acquires) { final Thread current = Thread.currentThread(); int c = getState(); if (c == 0) { if (compareAndSetState(0, acquires)) { s

  • 详解java并发之重入锁-ReentrantLock

    前言 目前主流的锁有两种,一种是synchronized,另一种就是ReentrantLock,JDK优化到现在目前为止synchronized的性能已经和重入锁不分伯仲了,但是重入锁的功能和灵活性要比这个关键字多的多,所以重入锁是可以完全替代synchronized关键字的.下面就来介绍这个重入锁. 正文 ReentrantLock重入锁是Lock接口里最重要的实现,也是在实际开发中应用最多的一个,我这篇文章更接近实际开发的应用场景,为开发者提供直接上手应用.所以不是所有方法我都讲解,有些冷门

  • 详解Java中的ReentrantLock锁

    ReentrantLock锁 ReentrantLock是Java中常用的锁,属于乐观锁类型,多线程并发情况下.能保证共享数据安全性,线程间有序性 ReentrantLock通过原子操作和阻塞实现锁原理,一般使用lock获取锁,unlock释放锁, 下面说一下锁的基本使用和底层基本实现原理,lock和unlock底层 lock的时候可能被其他线程获得所,那么此线程会阻塞自己,关键原理底层用到Unsafe类的API: CAS和park 使用 java.util.concurrent.locks.R

  • 详解Java并发包基石AQS

    一.概述 AQS是一个用来构建锁和同步器的框架,使用AQS能简单且高效地构造出应用广泛的大量的同步器,比如我们提到的ReentrantLock,Semaphore,其他的诸如ReentrantReadWriteLock,SynchronousQueue,FutureTask等等皆是基于AQS的.当然,我们自己也能利用AQS非常轻松容易地构造出符合我们自己需求的同步器. 本章我们就一起探究下这个神奇的东东,并对其实现原理进行剖析理解 二.基本实现原理 AQS使用一个int成员变量来表示同步状态,通

  • Java源码解析之详解ReentrantLock

    ReentrantLock ReentrantLock是一种可重入的互斥锁,它的行为和作用与关键字synchronized有些类似,在并发场景下可以让多个线程按照一定的顺序访问同一资源.相比synchronized,ReentrantLock多了可扩展的能力,比如我们可以创建一个名为MyReentrantLock的类继承ReentrantLock,并重写部分方法使其更加高效. 当一个线程调用ReentrantLock.lock()方法时,如果ReentrantLock没有被其他线程持有,且不存在

  • 详解Java ReentrantReadWriteLock读写锁的原理与实现

    目录 概述 原理概述 加锁原理 图解过程 源码解析 解锁原理 图解过程 源码解析 概述 ReentrantReadWriteLock读写锁是使用AQS的集大成者,用了独占模式和共享模式.本文和大家一起理解下ReentrantReadWriteLock读写锁的实现原理.在这之前建议大家阅读下下面3篇关联文章: 深入浅出理解Java并发AQS的独占锁模式 深入浅出理解Java并发AQS的共享锁模式 通俗易懂读写锁ReentrantReadWriteLock的使用 原理概述 上图是ReentrantR

  • Java并发编程Semaphore计数信号量详解

    Semaphore 是一个计数信号量,它的本质是一个共享锁.信号量维护了一个信号量许可集.线程可以通过调用acquire()来获取信号量的许可:当信号量中有可用的许可时,线程能获取该许可:否则线程必须等待,直到有可用的许可为止. 线程可以通过release()来释放它所持有的信号量许可(用完信号量之后必须释放,不然其他线程可能会无法获取信号量). 简单示例: package me.socketthread; import java.util.concurrent.ExecutorService;

  • 详解Java ReentrantLock可重入,可打断,锁超时的实现原理

    目录 概述 可重入 可打断 锁超时 概述 前面讲解了ReentrantLock加锁和解锁的原理实现,但是没有阐述它的可重入.可打断以及超时获取锁失败的原理,本文就重点讲解这三种情况.建议大家先看下这篇文章了解下ReentrantLock加锁的基本原理,图解Java ReentrantLock公平锁和非公平锁的实现. 可重入 可重入是指一个线程如果获取了锁,那么它就是锁的主人,那么它可以再次获取这把锁,这种就是理解为重入,简而言之,可以重复获取同一把锁,不会造成阻塞,举个例子如下: @Test p

  • Java并发编程之显式锁机制详解

    我们之前介绍过synchronized关键字实现程序的原子性操作,它的内部也是一种加锁和解锁机制,是一种声明式的编程方式,我们只需要对方法或者代码块进行声明,Java内部帮我们在调用方法之前和结束时加锁和解锁.而我们本篇将要介绍的显式锁是一种手动式的实现方式,程序员控制锁的具体实现,虽然现在越来越趋向于使用synchronized直接实现原子操作,但是了解了Lock接口的具体实现机制将有助于我们对synchronized的使用.本文主要涉及以下一些内容: 接口Lock的基本组成成员 可重入锁Re

  • Java并发编程:CountDownLatch与CyclicBarrier和Semaphore的实例详解

    Java并发编程:CountDownLatch与CyclicBarrier和Semaphore的实例详解 在java 1.5中,提供了一些非常有用的辅助类来帮助我们进行并发编程,比如CountDownLatch,CyclicBarrier和Semaphore,今天我们就来学习一下这三个辅助类的用法. 以下是本文目录大纲: 一.CountDownLatch用法 二.CyclicBarrier用法 三.Semaphore用法 若有不正之处请多多谅解,并欢迎批评指正. 一.CountDownLatch

随机推荐