Python线程指南分享

本文介绍了Python对于线程的支持,包括“学会”多线程编程需要掌握的基础以及Python两个线程标准库的完整介绍及使用示例。

注意:本文基于Python2.4完成,;如果看到不明白的词汇请记得百度谷歌或维基,whatever。

1. 线程基础

1.1. 线程状态

线程有5种状态,状态转换的过程如下图所示:

thread_stat_simple

1.2. 线程同步(锁)

多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题。考虑这样一种情况:一个列表里所有元素都是0,线程"set"从后向前把所有元素改成1,而线程"print"负责从前往后读取列表并打印。那么,可能线程"set"开始改的时候,线程"print"便来打印列表了,输出就成了一半0一半1,这就是数据的不同步。为了避免这种情况,引入了锁的概念。

锁有两种状态——锁定和未锁定。每当一个线程比如"set"要访问共享数据时,必须先获得锁定;如果已经有别的线程比如"print"获得锁定了,那么就让线程"set"暂停,也就是同步阻塞;等到线程"print"访问完毕,释放锁以后,再让线程"set"继续。经过这样的处理,打印列表时要么全部输出0,要么全部输出1,不会再出现一半0一半1的尴尬场面。

线程与锁的交互如下图所示:

thread_lock

1.3. 线程通信(条件变量)

然而还有另外一种尴尬的情况:列表并不是一开始就有的;而是通过线程"create"创建的。如果"set"或者"print" 在"create"还没有运行的时候就访问列表,将会出现一个异常。使用锁可以解决这个问题,但是"set"和"print"将需要一个无限循环——他们不知道"create"什么时候会运行,让"create"在运行后通知"set"和"print"显然是一个更好的解决方案。于是,引入了条件变量。

条件变量允许线程比如"set"和"print"在条件不满足的时候(列表为None时)等待,等到条件满足的时候(列表已经创建)发出一个通知,告诉"set" 和"print"条件已经有了,你们该起床干活了;然后"set"和"print"才继续运行。

线程与条件变量的交互如下图所示:

thread_condition_wait

thread_condition_notify

1.4. 线程运行和阻塞的状态转换

最后看看线程运行和阻塞状态的转换。

thread_stat

阻塞有三种情况:

同步阻塞是指处于竞争锁定的状态,线程请求锁定时将进入这个状态,一旦成功获得锁定又恢复到运行状态;

等待阻塞是指等待其他线程通知的状态,线程获得条件锁定后,调用“等待”将进入这个状态,一旦其他线程发出通知,线程将进入同步阻塞状态,再次竞争条件锁定;

而其他阻塞是指调用time.sleep()、anotherthread.join()或等待IO时的阻塞,这个状态下线程不会释放已获得的锁定。

tips: 如果能理解这些内容,接下来的主题将是非常轻松的;并且,这些内容在大部分流行的编程语言里都是一样的。(意思就是非看懂不可 >_< 嫌作者水平低找别人的教程也要看懂)

2. thread

Python通过两个标准库thread和threading提供对线程的支持。thread提供了低级别的、原始的线程以及一个简单的锁。

# encoding: UTF-8
import thread
import time

# 一个用于在线程中执行的函数
def func():
  for i in range(5):
    print 'func'
    time.sleep(1)

  # 结束当前线程
  # 这个方法与thread.exit_thread()等价
  thread.exit() # 当func返回时,线程同样会结束

# 启动一个线程,线程立即开始运行
# 这个方法与thread.start_new_thread()等价
# 第一个参数是方法,第二个参数是方法的参数
thread.start_new(func, ()) # 方法没有参数时需要传入空tuple

# 创建一个锁(LockType,不能直接实例化)
# 这个方法与thread.allocate_lock()等价
lock = thread.allocate()

# 判断锁是锁定状态还是释放状态
print lock.locked()

# 锁通常用于控制对共享资源的访问
count = 0

# 获得锁,成功获得锁定后返回True
# 可选的timeout参数不填时将一直阻塞直到获得锁定
# 否则超时后将返回False
if lock.acquire():
  count += 1

  # 释放锁
  lock.release()

# thread模块提供的线程都将在主线程结束后同时结束

time.sleep(6)

thread 模块提供的其他方法:

thread.interrupt_main(): 在其他线程中终止主线程。

thread.get_ident(): 获得一个代表当前线程的魔法数字,常用于从一个字典中获得线程相关的数据。这个数字本身没有任何含义,并且当线程结束后会被新线程复用。

thread还提供了一个ThreadLocal类用于管理线程相关的数据,名为 thread._local,threading中引用了这个类。

由于thread提供的线程功能不多,无法在主线程结束后继续运行,不提供条件变量等等原因,一般不使用thread模块,这里就不多介绍了。

3. threading

threading基于Java的线程模型设计。锁(Lock)和条件变量(Condition)在Java中是对象的基本行为(每一个对象都自带了锁和条件变量),而在Python中则是独立的对象。Python Thread提供了Java Thread的行为的子集;没有优先级、线程组,线程也不能被停止、暂停、恢复、中断。Java Thread中的部分被Python实现了的静态方法在threading中以模块方法的形式提供。

threading 模块提供的常用方法:

threading.currentThread(): 返回当前的线程变量。

threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。

threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。

threading模块提供的类:

Thread, Lock, Rlock, Condition, [Bounded]Semaphore, Event, Timer, local.

3.1. Thread

Thread是线程类,与Java类似,有两种使用方法,直接传入要运行的方法或从Thread继承并覆盖run():

# encoding: UTF-8
import threading

# 方法1:将要执行的方法作为参数传给Thread的构造方法
def func():
  print 'func() passed to Thread'

t = threading.Thread(target=func)
t.start()

# 方法2:从Thread继承,并重写run()
class MyThread(threading.Thread):
  def run(self):
    print 'MyThread extended from Thread'

t = MyThread()
t.start()

构造方法:

Thread(group=None, target=None, name=None, args=(), kwargs={})

group: 线程组,目前还没有实现,库引用中提示必须是None;

target: 要执行的方法;

name: 线程名;

args/kwargs: 要传入方法的参数。

实例方法:

isAlive(): 返回线程是否在运行。正在运行指启动后、终止前。

get/setName(name): 获取/设置线程名。

is/setDaemon(bool): 获取/设置是否守护线程。初始值从创建该线程的线程继承。当没有非守护线程仍在运行时,程序将终止。

start(): 启动线程。

join([timeout]): 阻塞当前上下文环境的线程,直到调用此方法的线程终止或到达指定的timeout(可选参数)。

一个使用join()的例子:

# encoding: UTF-8
import threading
import time

def context(tJoin):
  print 'in threadContext.'
  tJoin.start()

  # 将阻塞tContext直到threadJoin终止。
  tJoin.join()

  # tJoin终止后继续执行。
  print 'out threadContext.'

def join():
  print 'in threadJoin.'
  time.sleep(1)
  print 'out threadJoin.'

tJoin = threading.Thread(target=join)
tContext = threading.Thread(target=context, args=(tJoin,))

tContext.start()

运行结果:

in threadContext.
in threadJoin.
out threadJoin.
out threadContext.

3.2. Lock

Lock(指令锁)是可用的最低级的同步指令。Lock处于锁定状态时,不被特定的线程拥有。Lock包含两种状态——锁定和非锁定,以及两个基本的方法。

可以认为Lock有一个锁定池,当线程请求锁定时,将线程至于池中,直到获得锁定后出池。池中的线程处于状态图中的同步阻塞状态。

构造方法:

Lock()

实例方法:

acquire([timeout]): 使线程进入同步阻塞状态,尝试获得锁定。

release(): 释放锁。使用前线程必须已获得锁定,否则将抛出异常。

# encoding: UTF-8
import threading
import time

data = 0
lock = threading.Lock()

def func():
  global data
  print '%s acquire lock...' % threading.currentThread().getName()

  # 调用acquire([timeout])时,线程将一直阻塞,
  # 直到获得锁定或者直到timeout秒后(timeout参数可选)。
  # 返回是否获得锁。
  if lock.acquire():
    print '%s get the lock.' % threading.currentThread().getName()
    data += 1
    time.sleep(2)
    print '%s release lock...' % threading.currentThread().getName()

    # 调用release()将释放锁。
    lock.release()

t1 = threading.Thread(target=func)
t2 = threading.Thread(target=func)
t3 = threading.Thread(target=func)
t1.start()
t2.start()
t3.start()

3.3. RLock

RLock(可重入锁)是一个可以被同一个线程请求多次的同步指令。RLock使用了“拥有的线程”和“递归等级”的概念,处于锁定状态时,RLock被某个线程拥有。拥有RLock的线程可以再次调用acquire(),释放锁时需要调用release()相同次数。

可以认为RLock包含一个锁定池和一个初始值为0的计数器,每次成功调用 acquire()/release(),计数器将+1/-1,为0时锁处于未锁定状态。

构造方法:

RLock()

实例方法:

acquire([timeout])/release(): 跟Lock差不多。

# encoding: UTF-8
import threading
import time

rlock = threading.RLock()

def func():
  # 第一次请求锁定
  print '%s acquire lock...' % threading.currentThread().getName()
  if rlock.acquire():
    print '%s get the lock.' % threading.currentThread().getName()
    time.sleep(2)

    # 第二次请求锁定
    print '%s acquire lock again...' % threading.currentThread().getName()
    if rlock.acquire():
      print '%s get the lock.' % threading.currentThread().getName()
      time.sleep(2)

    # 第一次释放锁
    print '%s release lock...' % threading.currentThread().getName()
    rlock.release()
    time.sleep(2)

    # 第二次释放锁
    print '%s release lock...' % threading.currentThread().getName()
    rlock.release()

t1 = threading.Thread(target=func)
t2 = threading.Thread(target=func)
t3 = threading.Thread(target=func)
t1.start()
t2.start()
t3.start()

3.4. Condition

Condition(条件变量)通常与一个锁关联。需要在多个Contidion中共享一个锁时,可以传递一个Lock/RLock实例给构造方法,否则它将自己生成一个RLock实例。

可以认为,除了Lock带有的锁定池外,Condition还包含一个等待池,池中的线程处于状态图中的等待阻塞状态,直到另一个线程调用notify()/notifyAll()通知;得到通知后线程进入锁定池等待锁定。

构造方法:

Condition([lock/rlock])

实例方法:

acquire([timeout])/release(): 调用关联的锁的相应方法。

wait([timeout]): 调用这个方法将使线程进入Condition的等待池等待通知,并释放锁。使用前线程必须已获得锁定,否则将抛出异常。

notify(): 调用这个方法将从等待池挑选一个线程并通知,收到通知的线程将自动调用acquire()尝试获得锁定(进入锁定池);其他线程仍然在等待池中。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。

notifyAll(): 调用这个方法将通知等待池中所有的线程,这些线程都将进入锁定池尝试获得锁定。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。

例子是很常见的生产者/消费者模式:

# encoding: UTF-8
import threading
import time

# 商品
product = None
# 条件变量
con = threading.Condition()

# 生产者方法
def produce():
  global product

  if con.acquire():
    while True:
      if product is None:
        print 'produce...'
        product = 'anything'

        # 通知消费者,商品已经生产
        con.notify()

      # 等待通知
      con.wait()
      time.sleep(2)

# 消费者方法
def consume():
  global product

  if con.acquire():
    while True:
      if product is not None:
        print 'consume...'
        product = None

        # 通知生产者,商品已经没了
        con.notify()

      # 等待通知
      con.wait()
      time.sleep(2)

t1 = threading.Thread(target=produce)
t2 = threading.Thread(target=consume)
t2.start()
t1.start()

3.5. Semaphore/BoundedSemaphore

Semaphore(信号量)是计算机科学史上最古老的同步指令之一。Semaphore管理一个内置的计数器,每当调用acquire()时-1,调用release() 时+1。计数器不能小于0;当计数器为0时,acquire()将阻塞线程至同步锁定状态,直到其他线程调用release()。

基于这个特点,Semaphore经常用来同步一些有“访客上限”的对象,比如连接池。

BoundedSemaphore 与Semaphore的唯一区别在于前者将在调用release()时检查计数器的值是否超过了计数器的初始值,如果超过了将抛出一个异常。

构造方法:

Semaphore(value=1): value是计数器的初始值。

实例方法:

acquire([timeout]): 请求Semaphore。如果计数器为0,将阻塞线程至同步阻塞状态;否则将计数器-1并立即返回。

release(): 释放Semaphore,将计数器+1,如果使用BoundedSemaphore,还将进行释放次数检查。release()方法不检查线程是否已获得 Semaphore。

# encoding: UTF-8
import threading
import time

# 计数器初值为2
semaphore = threading.Semaphore(2)

def func():

  # 请求Semaphore,成功后计数器-1;计数器为0时阻塞
  print '%s acquire semaphore...' % threading.currentThread().getName()
  if semaphore.acquire():

    print '%s get semaphore' % threading.currentThread().getName()
    time.sleep(4)

    # 释放Semaphore,计数器+1
    print '%s release semaphore' % threading.currentThread().getName()
    semaphore.release()

t1 = threading.Thread(target=func)
t2 = threading.Thread(target=func)
t3 = threading.Thread(target=func)
t4 = threading.Thread(target=func)
t1.start()
t2.start()
t3.start()
t4.start()

time.sleep(2)

# 没有获得semaphore的主线程也可以调用release
# 若使用BoundedSemaphore,t4释放semaphore时将抛出异常
print 'MainThread release semaphore without acquire'
semaphore.release()

3.6. Event

Event(事件)是最简单的线程通信机制之一:一个线程通知事件,其他线程等待事件。Event内置了一个初始为False的标志,当调用set()时设为True,调用clear()时重置为 False。wait()将阻塞线程至等待阻塞状态。

Event其实就是一个简化版的 Condition。Event没有锁,无法使线程进入同步阻塞状态。

构造方法:

Event()

实例方法:

isSet(): 当内置标志为True时返回True。

set(): 将标志设为True,并通知所有处于等待阻塞状态的线程恢复运行状态。

clear(): 将标志设为False。

wait([timeout]): 如果标志为True将立即返回,否则阻塞线程至等待阻塞状态,等待其他线程调用set()。

# encoding: UTF-8
import threading
import time

event = threading.Event()

def func():
  # 等待事件,进入等待阻塞状态
  print '%s wait for event...' % threading.currentThread().getName()
  event.wait()

  # 收到事件后进入运行状态
  print '%s recv event.' % threading.currentThread().getName()

t1 = threading.Thread(target=func)
t2 = threading.Thread(target=func)
t1.start()
t2.start()

time.sleep(2)

# 发送事件通知
print 'MainThread set event.'
event.set()

3.7. Timer

Timer(定时器)是Thread的派生类,用于在指定时间后调用一个方法。

构造方法:

Timer(interval, function, args=[], kwargs={})

interval: 指定的时间

function: 要执行的方法

args/kwargs: 方法的参数

实例方法:

Timer从Thread派生,没有增加实例方法。

# encoding: UTF-8
import threading

def func():
  print 'hello timer!'

timer = threading.Timer(5, func)
timer.start()

3.8. local

local是一个小写字母开头的类,用于管理 thread-local(线程局部的)数据。对于同一个local,线程无法访问其他线程设置的属性;线程设置的属性不会被其他线程设置的同名属性替换。

可以把local看成是一个“线程-属性字典”的字典,local封装了从自身使用线程作为 key检索对应的属性字典、再使用属性名作为key检索属性值的细节。

# encoding: UTF-8
import threading

local = threading.local()
local.tname = 'main'

def func():
  local.tname = 'notmain'
  print local.tname

t1 = threading.Thread(target=func)
t1.start()
t1.join()

print local.tname

熟练掌握Thread、Lock、Condition就可以应对绝大多数需要使用线程的场合,某些情况下local也是非常有用的东西。本文的最后使用这几个类展示线程基础中提到的场景:

# encoding: UTF-8
import threading

alist = None
condition = threading.Condition()

def doSet():
  if condition.acquire():
    while alist is None:
      condition.wait()
    for i in range(len(alist))[::-1]:
      alist[i] = 1
    condition.release()

def doPrint():
  if condition.acquire():
    while alist is None:
      condition.wait()
    for i in alist:
      print i,
    print
    condition.release()

def doCreate():
  global alist
  if condition.acquire():
    if alist is None:
      alist = [0 for i in range(10)]
      condition.notifyAll()
    condition.release()

tset = threading.Thread(target=doSet,name='tset')
tprint = threading.Thread(target=doPrint,name='tprint')
tcreate = threading.Thread(target=doCreate,name='tcreate')
tset.start()
tprint.start()
tcreate.start()

以上这篇Python线程指南分享就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python多线程高级锁condition简单用法示例

    本文实例讲述了python多线程高级锁condition简单用法.分享给大家供大家参考,具体如下: 多线程编程中如果使用Condition对象代替lock, 能够实现在某个事件触发后才处理数据, condition中含有的方法: - wait:线程挂起,收到notify通知后继续运行 - notify:通知其他线程, 解除其它线程的wai状态 - notifyAll(): 通知所有线程 - acquire和release: 获得锁和解除锁, 与lock类似, - enter和exit使得对象支持

  • Python 线程池用法简单示例

    本文实例讲述了Python 线程池用法.分享给大家供大家参考,具体如下: # -*- coding:utf-8 -*- #! python3 ''' Created on 2019-10-2 @author: Administrator ''' from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor import os,time,random def task(n): print('%s is runing' %

  • python多线程并发及测试框架案例

    这篇文章主要介绍了python多线程并发及测试框架案例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 1.循环创建多个线程,并通过循环启动执行 import threading from datetime import * from time import sleep # 单线程执行 def test(): print('hello world') t = threading.Thread(target=test) t.start() # 多线

  • Python多线程模块Threading用法示例小结

    本文实例讲述了Python多线程模块Threading用法.分享给大家供大家参考,具体如下: 步入正题前,先准备下基本知识,线程与进程的概念. 相信作为一个测试人员,如果从理论概念上来说其两者的概念或者区别,估计只会一脸蒙蔽,这里就举个例子来说明下其中的相关概念. 平安夜刚过,你是吃到了苹果还是香蕉呢...其实当你用手去接下对方苹果的时候,你的手臂就可以比喻成进程,你的五个手指就可以比喻成线程,所以很明显,线程可以说是进程的细化,没有进程就不会有线程. 这里还是说下必要的概念:    进程 是操

  • Python全局锁中如何合理运用多线程(多进程)

    Python全局锁 (1)全局锁导致的问题 全局锁的英文简称是GIL,全称是Global Interpreter Lock(全局解释器锁),来源是python设计之初的考虑,为了数据安全所做的决定,每个线程在执行时候都需要先获取GIL,保证同一时刻只有一个线程可以执行代码,即同一时刻只有一个线程使用CPU,也就是说多线程并不是真正意义上的同时执行. 每个CPU在同一时间只能执行一个线程(在单核CPU下的多线程其实都只是并发,不是并行,并发和并行从宏观上来讲都是同时处理多路请求的概念.但并发和并行

  • Python队列、进程间通信、线程案例

    进程互斥锁 多进程同时抢购余票 # 并发运行,效率高,但竞争写同一文件,数据写入错乱 # data.json文件内容为 {"ticket_num": 1} import json import time from multiprocessing import Process def search(user): with open('data.json', 'r', encoding='utf-8') as f: dic = json.load(f) print(f'用户{user}查看

  • Python线程指南分享

    本文介绍了Python对于线程的支持,包括"学会"多线程编程需要掌握的基础以及Python两个线程标准库的完整介绍及使用示例. 注意:本文基于Python2.4完成,:如果看到不明白的词汇请记得百度谷歌或维基,whatever. 1. 线程基础 1.1. 线程状态 线程有5种状态,状态转换的过程如下图所示: thread_stat_simple 1.2. 线程同步(锁) 多线程的优势在于可以同时运行多个任务(至少感觉起来是这样).但是当线程需要共享数据时,可能存在数据不同步的问题.考虑

  • Python线程指南详细介绍

    本文介绍了Python对于线程的支持,包括"学会"多线程编程需要掌握的基础以及Python两个线程标准库的完整介绍及使用示例. 注意:本文基于Python2.4完成,:如果看到不明白的词汇请记得百度谷歌或维基,whatever. 1. 线程基础 1.1. 线程状态 线程有5种状态,状态转换的过程如下图所示: 1.2. 线程同步(锁) 多线程的优势在于可以同时运行多个任务(至少感觉起来是这样).但是当线程需要共享数据时,可能存在数据不同步的问题.考虑这样一种情况:一个列表里所有元素都是0

  • Python线程池thread pool创建使用及实例代码分享

    目录 前言 一.线程 1.线程介绍 2.线程特性 轻型实体 独立调度和分派的基本单位 可并发执行 4)共享进程资源 二.线程池 三.线程池的设计思路 四.Python线程池构建 1.构建思路 2.实现库功能函数 ThreadPoolExecutor() submit() result() cancel() cancelled() running() as_completed() map() 前言 首先线程和线程池不管在哪个语言里面,理论都是通用的.对于开发来说,解决高并发问题离不开对多个线程处理

  • 不要用强制方法杀掉python线程

    前言: 不要试图用强制方法杀掉一个python线程,这从服务设计上就存在不合理性. 多线程本用来任务的协作并发,如果你使用强制手段干掉线程,那么很大几率出现意想不到的bug.  请记住一点,锁资源不会因为线程退出而释放锁资源 ! 我们可以举出两个常见的例子: 1. 有个A线程拿到了锁,因为他是被强制干掉的,没能及时的release()释放锁资源,那么导致所有的线程获取资源是都被阻塞下去,这就是典型的死锁场景. 2.在常见的生产消费者的场景下,消费者从任务队列获取任务,但是被干掉后没有把正在做的任

  • python线程池threadpool实现篇

    本文为大家分享了threadpool线程池中所有的操作,供大家参考,具体内容如下 首先介绍一下自己使用到的名词: 工作线程(worker):创建线程池时,按照指定的线程数量,创建工作线程,等待从任务队列中get任务: 任务(requests):即工作线程处理的任务,任务可能成千上万个,但是工作线程只有少数.任务通过          makeRequests来创建 任务队列(request_queue):存放任务的队列,使用了queue实现的.工作线程从任务队列中get任务进行处理: 任务处理函

  • Python线程池模块ThreadPoolExecutor用法分析

    本文实例讲述了Python线程池模块ThreadPoolExecutor用法.分享给大家供大家参考,具体如下: python3内置的有Threadingpool和ThreadPoolExecutor模块,两个都可以做线程池,当然ThreadPoolExecutor会更好用一些,而且也有ProcessPoolExecutor进程池模块,使用方法基本一致. 首先导入模块 from concurrent.futures import ThreadPoolExecutor 使用方法很简单,最常用的可能就

  • 解决python线程卡死的问题

    1. top命令和日志方式判定卡死的位置 python代码忽然卡死,日志不输出,通过如下方式可以确定线程确实已经死掉了: # top 命令 top命令可以看到机器上所有线程的执行情况,%CPU和%MEM可以看出线程消耗的资源情况 由于机器上线程数量太多,可能要查看的线程的信息在top命令当前屏幕上显示不出来可以通过如下方式查看 在top命令下输入:u 接下来会提示输入用户名,就可以查看该用户所执行的所有线程 Which user (blank for all): denglinjie 这样就可以

  • Python线程threading模块用法详解

    本文实例讲述了Python线程threading模块用法.分享给大家供大家参考,具体如下: threading-更高级别的线程接口 源代码:Lib/threading.py 该模块在较低级别thread模块之上构建更高级别的线程接口.另请参见mutex和Queue模块. 该dummy_threading模块适用于threading因thread缺失而无法使用的情况 . 注意: 从Python 2.6开始,该模块提供 符合 PEP 8的别名和属性,以替换camelCase受Java的线程API启发

  • 4个的Python自动化脚本分享

    目录 1.将 PDF 转换为音频文件 2.从列表中播放随机音乐 3.不再有书签了 4.清理下载文件夹 前言: 大家平时有没有注意到你每天可能会执行许多的重复的任务,例如阅读 pdf.播放音乐.打开书签.清理文件夹等等. 我将分享4个实用的python的自动化脚本,无需手动一次又一次地完成这些任务,非常方便. 1.将 PDF 转换为音频文件 脚本可以将 pdf 转换为音频文件,原理也很简单,首先用 PyPDF 提取 pdf 中的文本,然后用 Pyttsx3 将文本转语音.关于文本转语音,你还可以看

随机推荐