Numpy中np.max的用法及np.maximum区别

Numpy中np.max(即np.amax)的用法

>>> import numpy as np
>>> help(np.max)

当遇到一个不认识的函数,我们就需要查看一下帮助文档

np.maxnp.amax是同名函数

amax(a, axis=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>)

Return the maximum of an array or maximum along an axis.寻找矩阵最大和最小的元素
axis=0 代表行 , axis=1 代表列
若要返回每一列元素的最大值,需要在 axis=1 方向进行比较,则指定 axis=1
若要返回每一行的最大值,在 axis=0 方向进行比较,则指定 axis=0

eg:一个简单的例子

import numpy as np

np.random.seed(10)
a = np.random.randint(1, 10, [5, 3])
print(a)
b = np.amax(a, axis=1) #找一个每行最大的
print(b)

numpy中的np.max 与 np.maximum区别详解

1. 参数
首先比较二者的参数部分:

np.max:(a, axis=None, out=None, keepdims=False)

  • 求序列的最值
  • 最少接收一个参数
  • axis:默认为列向(也即 axis=0),axis = 1 时为行方向的最值;

np.maximum:(X, Y, out=None)

  • X 与 Y 逐位比较取其大者;
  • 最少接收两个参数

2. 使用上

>> np.max([-2, -1, 0, 1, 2])
2

>> np.maximum([-2, -1, 0, 1, 2], 0)
array([0, 0, 0, 1, 2])

  # 当然 np.maximum 接受的两个参数,也可以大小一致
  # 或者更为准确地说,第二个参数只是一个单独的值时,其实是用到了维度的 broadcast 机制;

到此这篇关于Numpy中np.max的用法及np.maximum区别的文章就介绍到这了,更多相关Numpy np.max的用法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python numpy 提取矩阵的某一行或某一列的实例

    如下所示: import numpy as np a=np.arange(9).reshape(3,3) a Out[31]: array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) 矩阵的某一行 a[1] Out[32]: array([3, 4, 5]) 矩阵的某一列 a[:,1] Out[33]: array([1, 4, 7]) b=np.eye(3,3) b Out[36]: array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0.,

  • Python中的Numpy入门教程

    1.Numpy是什么 很简单,Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy.matplotlib一起使用.其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数.如果接触过matlab.scilab,那么numpy很好入手. 在以下的代码示例中,总是先导入了numpy: 复制代码 代码如下: >>> import numpy as np>>> print np.version.version1.6.2

  • Python Numpy 数组的初始化和基本操作

    Python 是一种高级的,动态的,多泛型的编程语言.Python代码很多时候看起来就像是伪代码一样,因此你可以使用很少的几行可读性很高的代码来实现一个非常强大的想法. 一.基础: Numpy的主要数据类型是ndarray,即多维数组.它有以下几个属性: ndarray.ndim:数组的维数 ndarray.shape:数组每一维的大小 ndarray.size:数组中全部元素的数量 ndarray.dtype:数组中元素的类型(numpy.int32, numpy.int16, and num

  • Python中Numpy包的安装与使用方法简明教程

    本文实例讲述了Python中Numpy包的安装与使用方法.分享给大家供大家参考,具体如下: Numpy包的安装 准备工作 1. Python安装 2. pip安装(如使用pip安装命令:pip install numpy) 3. 将pip所在的文件夹添加到环境变量path路径中 4. 下载相应的Numpy安装包,.whl格式.下载链接. 以上准备工作准备完毕之后,进行Numpy安装,先进入whl安装包的存放目录.比如在C盘: cd C:\ 再使用命令行安装: pip install numpy文

  • python中numpy.zeros(np.zeros)的使用方法

    翻译: 用法:zeros(shape, dtype=float, order='C') 返回:返回来一个给定形状和类型的用0填充的数组: 参数:shape:形状 dtype:数据类型,可选参数,默认numpy.float64 dtype类型: t ,位域,如t4代表4位 b,布尔值,true or false i,整数,如i8(64位) u,无符号整数,u8(64位) f,浮点数,f8(64位) c,浮点负数, o,对象, s,a,字符串,s24 u,unicode,u24 order:可选参数

  • Numpy array数据的增、删、改、查实例

    准备工作: 增.删.改.查的方法有很多很多种,这里只展示出常用的几种. >>> import numpy as np >>> a = np.array([[1,2],[3,4],[5,6]])#创建3行2列二维数组. >>> a array([[1, 2], [3, 4], [5, 6]]) >>> a = np.zeros(6)#创建长度为6的,元素都是0一维数组 >>> a = np.zeros((2,3))#创

  • 浅谈numpy数组的几种排序方式

    简单介绍 NumPy系统是Python的一种开源的数组计算扩展.这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix)). 创建数组 创建1维数组: data = np.array([1,3,4,8]) 查看数组维度 data.shape 查看数组类型 data.dtype 通过索引获取或修改数组元素 data[1] 获取元素 data[1] = 'a' 修改元素 创建二维数组 data

  • 关于Numpy数据类型对象(dtype)使用详解

    常用方法 #记住引入numpy时要是用别名np,则所有的numpy字样都要替换 #查询数值类型 >>>type(float) dtype('float64') # 查询字符代码 >>> dtype('f') dtype('float32') >>> dtype('d') dtype('float64') # 查询双字符代码 >>> dtype('f8') dtype('float64') # 获取所有字符代码 >>>

  • numpy添加新的维度:newaxis的方法

    numpy中包含的newaxis可以给原数组增加一个维度 np.newaxis放的位置不同,产生的新数组也不同 一维数组 x = np.random.randint(1, 8, size=5) x Out[48]: array([4, 6, 6, 6, 5]) x1 = x[np.newaxis, :] x1 Out[50]: array([[4, 6, 6, 6, 5]]) x2 = x[:, np.newaxis] x2 Out[52]: array([[4], [6], [6], [6],

  • Python NumPy库安装使用笔记

    1. NumPy安装 使用pip包管理工具进行安装 复制代码 代码如下: $ sudo pip install numpy 使用pip包管理工具安装ipython(交互式shell工具) 复制代码 代码如下: $ sudo pip instlal ipython $ ipython --pylab  #pylab模式下, 会自动导入SciPy, NumPy, Matplotlib模块 2. NumPy基础 2.1. NumPy数组对象 具体解释可以看每一行代码后的解释和输出 复制代码 代码如下:

随机推荐