MySql索引使用策略分析
MySql索引
索引优点
1.可以通过建立唯一索引或者主键索引,保证数据的唯一性.
2.提高检索的数据性能
3.在表连接的连接条件 可以加速表与表直接的相连
4.建立索引,在查询中使用索引 可以提高性能
索引缺点
1.在创建索引和维护索引 会耗费时间,随着数据量的增加而增加
2.索引文件会占用物理空间,除了数据表需要占用物理空间之外,每一个索引还会占用一定的物理空间
3.当对表的数据进行 INSERT,UPDATE,DELETE 的时候,索引也要动态的维护,这样就会降低数据的维护速度,
(建立索引会占用磁盘空间的索引文件。一般情况这个问题不太严重,但如果你在一个大表上创建了多种组合索引,索引文件的会膨胀很快)。
使用索引需要注意的地方
1.在经常需要搜索的列上,可以加快索引的速度
2.主键列上可以确保列的唯一性
3.在表与表的而连接条件上加上索引,可以加快连接查询的速度
4.在经常需要排序(order by),分组(group by)和的distinct 列上加索引 可以加快排序查询的时间, (单独order by 用不了索引,索引考虑加where 或加limit)
5.在一些where 之后的 < <= > >= BETWEEN IN 以及某个情况下的like 建立字段的索引(B-TREE)
6.like语句的 如果你对nickname字段建立了一个索引.当查询的时候的语句是 nickname lick '%ABC%' 那么这个索引讲不会起到作用.而nickname lick 'ABC%' 那么将可以用到索引
7.索引不会包含NULL列,如果列中包含NULL值都将不会被包含在索引中,复合索引中如果有一列含有NULL值那么这个组合索引都将失效,一般需要给默认值0或者 ' '字符串
8.使用短索引,如果你的一个字段是Char(32)或者int(32),在创建索引的时候指定前缀长度 比如前10个字符 (前提是多数值是唯一的..)那么短索引可以提高查询速度,并且可以减少磁盘的空间,也可以减少I/0操作.
9.不要在列上进行运算,这样会使得mysql索引失效,也会进行全表扫描
10.选择越小的数据类型越好,因为通常越小的数据类型通常在磁盘,内存,cpu,缓存中 占用的空间很少,处理起来更快
什么情况下不创建索引
1.查询中很少使用到的列 不应该创建索引,如果建立了索引然而还会降低mysql的性能和增大了空间需求.
2.很少数据的列也不应该建立索引,比如 一个性别字段 0或者1,在查询中,结果集的数据占了表中数据行的比例比较大,mysql需要扫描的行数很多,增加索引,并不能提高效率
3.定义为text和image和bit数据类型的列不应该增加索引,
4.当表的修改(UPDATE,INSERT,DELETE)操作远远大于检索(SELECT)操作时不应该创建索引,这两个操作是互斥的关系
以上就是MySql索引使用策略分析的详细内容,更多关于MySQL 索引的资料请关注我们其它相关文章!
相关推荐
-
导致MySQL索引失效的一些常见写法总结
前言 最近一直忙着处理原来老项目遗留的一些SQL优化问题,由于当初表的设计以及字段设计的问题,随着业务的增长,出现了大量的慢SQL,导致MySQL的CPU资源飙升,基于此,给大家简单分享下这些比较使用的易于学习和使用的经验. 这次的话简单说下如何防止你的索引失效. 再说之前我先根据我最近的经验说下我对索引的看法,我觉得并不是所以的表都需要去建立索引,对于一些业务数据,可能量比较大了,查询数据已经有了一点压力,那么最简单.快速的办法就是建立合适的索引,但是有些业务可能表里就没多少数据,或者表的使用
-
MySQL索引的各种类型
什么是索引? 索引是数据库存储引擎用于快速查找到指定数据的一种数据结构. 可以用新华字典做类比:如果新华字典中对每个字的详细解释是数据库中表的记录,那么按部首或拼音等排序的目录就是索引,使用它可以让我们快速查找的某一个字详细解释的位置. 在MySQL中,存储引擎也是用了类似的方法,先在索引中找到对应的值,然后再根据匹配的索引值找到对应表中记录的位置. 面试中为什么问索引? 之所以在索引在面试中经常被问到,就是因为:索引是数据库的良好性能表现的关键,也是对查询能优化最有效的手段.索引能够轻易地把查
-
MySQL8.0中的降序索引
前言 相信大家都知道,索引是有序的:不过,在MySQL之前版本中,只支持升序索引,不支持降序索引,这会带来一些问题:在最新的MySQL 8.0版本中,终于引入了降序索引,接下来我们就来看一看. 降序索引 单列索引 (1)查看测试表结构 mysql> show create table sbtest1\G *************************** 1. row *************************** Table: sbtest1 Create Table: CREAT
-
MySQL 函数索引的优化方案
很多开发人员在使用MySQL时经常会在部分列上进行函数计算等,导致无法走索引,在数据量大的时候,查询效率低下.针对此种情况本文从MySQL5.7 及MySQL8.0中分别进行不同方式的优化. 1. MySQL5.7 MySQL5.7版本中不支持函数索引,因此 遇到函数索引的时候需要进行修改,否则即使查询的字段上有索引,执行时也无法使用索引而进行全表扫描,数据量大的表查询时间会比较长.具体案例如下: 1.1 创建测试表及数据 mysql> use testdb; Database changed
-
MySQL索引失效的几种情况汇总
一.索引不存储null值 更准确的说,单列索引不存储null值,复合索引不存储全为null的值.索引不能存储Null,所以对这列采用is null条件时,因为索引上根本 没Null值,不能利用到索引,只能全表扫描. 为什么索引列不能存Null值? 将索引列值进行建树,其中必然涉及到诸多的比较操作.Null值的特殊性就在于参与的运算大多取值为null. 这样的话,null值实际上是不能参与进建索引的过程.也就是说,null值不会像其他取值一样出现在索引树的叶子节点上. 二.不适合键值较少的列(重复
-
MySQL btree索引与hash索引区别
在MySQL中,大多数索引(如 PRIMARY KEY,UNIQUE,INDEX和FULLTEXT)都是在BTREE中存储,但使用memory引擎可以选择BTREE索引或者HASH索引,两种不同类型的索引各自有其不同的使用范围. B树索引具有范围查找和前缀查找的能力,对于有N节点的B树,检索一条记录的复杂度为O(LogN).相当于二分查找. 哈希索引只能做等于查找,但是无论多大的Hash表,查找复杂度都是O(1). 显然,如果值的差异性大,并且以等值查找(=. <.>.in)为主,Hash索引
-
MySQL学习教程之聚簇索引
聚簇,其实是相对于InnoDB这个数据库引擎来说的,因此在将聚簇索引的时候,我们通过InnoDB和MyISAM这两个MySQL的数据库引擎展开. InnoDB和MyISAM的数据分布对比 CREATE TABLE test (col1 int NOT NULL, col2 int NOT NULL, PRIMARY KEY(col1), KEY(col2)); 首先通过以上SQL语句创建出一个表格,其中col1是主键,两列数据均创建了索引.然后我们数据的主键取值为1-10000,按照随机的顺序插
-
MySQL 8.0 之索引跳跃扫描(Index Skip Scan)
前言 MySQL 8.0.13开始支持 index skip scan 也即索引跳跃扫描.该优化方式支持那些SQL在不符合组合索引最左前缀的原则的情况,优化器依然能组使用组合索引. talk is cheap ,show me the code 实践 使用官方文档的例子,构造数据 mysql> CREATE TABLE t1 (f1 INT NOT NULL, f2 INT NOT NULL, PRIMARY KEY(f1, f2)); Query OK, 0 rows affected (0.
-
详解MySQL 聚簇索引与非聚簇索引
1.聚集索引 表数据按照索引的顺序来存储的,也就是说索引项的顺序与表中记录的物理顺序一致.对于聚集索引,叶子结点即存储了真实的数据行,不再有另外单独的数据页. 在一张表上最多只能创建一个聚集索引,因为真实数据的物理顺序只能有一种. 从物理文件也可以看出 InnoDB(聚集索引)的数据文件只有数据结构文件.frm和数据文件.idb 其中.idb中存放的是数据和索引信息 是存放在一起的. 2.非聚集索引 表数据存储顺序与索引顺序无关.对于非聚集索引,叶结点包含索引字段值及指向数据页数据行的逻辑指针,
-
MySql索引使用策略分析
MySql索引 索引优点 1.可以通过建立唯一索引或者主键索引,保证数据的唯一性. 2.提高检索的数据性能 3.在表连接的连接条件 可以加速表与表直接的相连 4.建立索引,在查询中使用索引 可以提高性能 索引缺点 1.在创建索引和维护索引 会耗费时间,随着数据量的增加而增加 2.索引文件会占用物理空间,除了数据表需要占用物理空间之外,每一个索引还会占用一定的物理空间 3.当对表的数据进行 INSERT,UPDATE,DELETE 的时候,索引也要动态的维护,这样就会降低数据的维护速度, (建立
-
Mysql索引结合explain分析示例
目录 简介 1.索引分类 聚簇索引 为什么选择B+树 explain 简介 Mysql 在我们项目中使用是非常广的,当我们数据量大的时候,就需要考虑建立索引了,我感觉这也是一种以空间换时间的方式:在我们查询的时候,通过使用索引来提高速度:那么,我们在使用的过程中,怎么判定有没有走索引呢?有一个explain语句来进行分析,根据阿里的Java编程规范,至少类型要提升到range;我那时候就在想为什么要提升到range呢?后来结合Mysql的索引终于知道explain和Mysql底层B+树的对应关系
-
MySQL索引优化实例分析
目录 1.数据准备 2.实例一 3.MySQL如何选择合适的索引? 4.常见 SQL 深入优化 4.1.Order by与Group by优化 4.2.分页查询优化 4.3.join关联查询优化 4.3.1.数据准备 4.3.2.MySQL 表关联常见的两种算法 4.4.in和exsits优化 4.5.count(*)查询优化 5.索引设计原则 1.数据准备 #1.建立员工表,并创建name,age,position索引,id为自增主键 CREATE TABLE `employees` ( `
-
MySQL索引用法实例分析
本文实例分析了MySQL索引用法.分享给大家供大家参考,具体如下: MYSQL描述: 一个文章库,里面有两个表:category和article.category里面有10条分类数据.article里面有20万条.article里面有一个"article_category"字段是与category里的"category_id"字段相对应的.article表里面已经把 article_category字义为了索引.数据库大小为1.3G. 问题描述: 执行一个很普通的查
-
mysql索引覆盖实例分析
本文实例讲述了mysql索引覆盖.分享给大家供大家参考,具体如下: 索引覆盖 如果查询的列恰好是索引的一部分,那么查询只需要在索引文件上进行,不需要回行到磁盘再找数据.这种查询速度非常快,称为"索引覆盖". 假设有一张t15表,在表中建立了一个联合索引:cp(cat_id,price) 当我们使用下面的sql语句,会出现索引覆盖的情况.不信我们可以来查看一下,这里的Extra中显示了Using index,表示这条sql语句刚好用到了索引覆盖. select price from t1
-
MySQL索引使用全程分析
创建2张用户表user.user2,表结构相同,但user表使用InnoDB存储引擎,而user2表则使用 MyISAM存储引擎. 复制代码 代码如下: -- Table "user" DDL CREATE TABLE `user` ( `id` int(11) NOT NULL AUTO_INCREMENT, `name` varchar(50) DEFAULT NULL, `email` varchar(100) DEFAULT NULL, `age` tinyint(4) DEF
-
mysql索引失效的几种情况分析
1.最佳左前缀原则--如果索引了多列,要遵守最左前缀原则.指的是查询要从索引的最左前列开始并且不跳过索引中的列. 前提条件:表中已添加复合索引(username,password,age) 分析:该查询缺少username,查询条件复合索引最左侧username缺少,违反了最佳左前缀原则,导致索引失效,变为ALL,全表扫描 分析:查询条件缺少username,password,查询条件复合索引最左侧username,password缺少,违反了最佳左前缀原则,导致索引失效,变为ALL,全表扫描
-
MySQL索引背后的之使用策略及优化(高性能索引策略)
本章的内容完全基于上文的理论基础,实际上一旦理解了索引背后的机制,那么选择高性能的策略就变成了纯粹的推理,并且可以理解这些策略背后的逻辑. 示例数据库 为了讨论索引策略,需要一个数据量不算小的数据库作为示例.本文选用MySQL官方文档中提供的示例数据库之一:employees.这个数据库关系复杂度适中,且数据量较大.下图是这个数据库的E-R关系图(引用自MySQL官方手册): 图12 MySQL官方文档中关于此数据库的页面为http://dev.mysql.com/doc/employee/en
-
深入解析MySQL索引的原理与优化策略
目录 索引的概念 索引的原理 索引的类型 索引的使用 索引的使用方式 注意事项 索引优化技巧 索引的概念 MySQL索引是一种用于加速数据库查询的数据结构,它类似于书籍的目录,能够快速指导我们找到需要的信息.MySQL索引可以根据一定的算法和数据结构进行排序和存储,从而实现高效的数据查找和访问.在数据库中,索引可以加速数据的查询和更新操作,提高系统性能. MySQL支持多种索引类型,常见的包括B-tree索引.哈希索引和全文索引等.其中,B-tree索引是最常用的一种,它是一种平衡树结构,可以将
-
浅谈MySQL和Lucene索引的对比分析
MySQL和Lucene都可以对数据构建索引并通过索引查询数据,一个是关系型数据库,一个是构建搜索引擎(Solr.ElasticSearch)的核心类库.两者的索引(index)有什么区别呢?以前写过一篇<Solr与MySQL查询性能对比>,只是简单的对比了下查询性能,对于内部原理却没有解释,本文简单分析下两者的索引区别. MySQL索引实现 在MySQL中,索引属于存储引擎级别的概念,不同存储引擎对索引的实现方式是不同的,本文主要讨论MyISAM和InnoDB两个存储引擎的索引实现方式. M
随机推荐
- NYboy.vbs病毒源代码公布,我来模拟熊猫烧香
- Docker搭建前端Java的开发环境详解
- 详解ORACLE SEQUENCE用法
- java判断字符串是否为数字的方法小结
- php与ajax一些经验
- 一个asp版XMLDOM操作类
- 删除Javascript Object中间的key
- jQuery Validate初步体验(二)
- 详解Servlet3.0新特性(从注解配置到websocket编程)
- 基于C中含有if的宏定义详解
- Java IO流体系继承结构图_动力节点Java学院整理
- php模拟服务器实现autoindex效果的方法
- c++中for双循环的那些事
- Android实现微博菜单弹出效果
- PHP7扩展开发之基于函数方式使用lib库的方法详解
- Centos7实现磁盘限额设置方法
- vue-cli下的vuex的简单Demo图解(实现加1减1操作)
- Python 3.8新特征之asyncio REPL
- Windows下MongoDB的下载安装、环境配置教程图解
- C语言版实现链队列