python 装饰器功能与用法案例详解

本文实例讲述了python 装饰器功能与用法。分享给大家供大家参考,具体如下:

1、必备

#### 第一波 ####
def foo():
  print 'foo'

foo   #表示是函数
foo()  #表示执行foo函数

#### 第二波 ####
def foo():
  print 'foo'

foo = lambda x: x + 1
foo()  # 执行下面的lambda表达式,而不再是原来的foo函数,因为函数 foo 被重新定义了

2、需求来了

初创公司有N个业务部门,1个基础平台部门,基础平台负责提供底层的功能,如:数据库操作、redis调用、监控API等功能。业务部门使用基础功能时,只需调用基础平台提供的功能即可。如下:

############### 基础平台提供的功能如下 ###############
def f1():
  print 'f1'

def f2():
  print 'f2'

def f3():
  print 'f3'

def f4():
  print 'f4'

############### 业务部门A 调用基础平台提供的功能 ###############
f1()
f2()
f3()
f4()

############### 业务部门B 调用基础平台提供的功能 ###############
f1()
f2()
f3()
f4()

目前公司有条不紊的进行着,但是,以前基础平台的开发人员在写代码时候没有关注验证相关的问题,即:基础平台的提供的功能可以被任何人使用。现在需要对基础平台的所有功能进行重构,为平台提供的所有功能添加验证机制,即:执行功能前,先进行验证。

老大把工作交给 Low B,他是这么做的:

跟每个业务部门交涉,每个业务部门自己写代码,调用基础平台的功能之前先验证。诶,这样一来基础平台就不需要做任何修改了。

当天Low B 被开除了...

老大把工作交给 Low BB,他是这么做的:

只对基础平台的代码进行重构,让N业务部门无需做任何修改

############### 基础平台提供的功能如下 ############### 

def f1():
  # 验证1
  # 验证2
  # 验证3
  print 'f1'

def f2():
  # 验证1
  # 验证2
  # 验证3
  print 'f2'

def f3():
  # 验证1
  # 验证2
  # 验证3
  print 'f3'

def f4():
  # 验证1
  # 验证2
  # 验证3
  print 'f4'
############### 业务部门不变 ###############
### 业务部门A 调用基础平台提供的功能### 

f1()
f2()
f3()
f4()

### 业务部门B 调用基础平台提供的功能 ### 

f1()
f2()
f3()
f4()

过了一周 Low BB 被开除了...

老大把工作交给 Low BBB,他是这么做的:

只对基础平台的代码进行重构,其他业务部门无需做任何修改

############### 基础平台提供的功能如下 ############### 

def check_login():
  # 验证1
  # 验证2
  # 验证3
  pass

def f1():

  check_login()

  print 'f1'

def f2():

  check_login()

  print 'f2'

def f3():

  check_login()

  print 'f3'

def f4():

  check_login()

  print 'f4'

老大看了下Low BBB 的实现,嘴角漏出了一丝的欣慰的笑,语重心长的跟Low BBB聊了个天:

老大说:

写代码要遵循开发封闭原则,虽然在这个原则是用的面向对象开发,但是也适用于函数式编程,简单来说,它规定已经实现的功能代码不允许被修改,但可以被扩展,即:

封闭:已实现的功能代码块
开放:对扩展开发

如果将开放封闭原则应用在上述需求中,那么就不允许在函数 f1 、f2、f3、f4的内部进行修改代码,老板就给了Low BBB一个实现方案:

def w1(func):
  def inner():
    # 验证1
    # 验证2
    # 验证3
    return func()
  return inner

@w1
def f1():
  print 'f1'
@w1
def f2():
  print 'f2'
@w1
def f3():
  print 'f3'
@w1
def f4():
  print 'f4'

对于上述代码,也是仅仅对基础平台的代码进行修改,就可以实现在其他人调用函数 f1 f2 f3 f4 之前都进行【验证】操作,并且其他业务部门无需做任何操作。

Low BBB心惊胆战的问了下,这段代码的内部执行原理是什么呢?

老大正要生气,突然Low BBB的手机掉到地上,恰恰屏保就是Low BBB的女友照片,老大一看一紧一抖,喜笑颜开,交定了Low BBB这个朋友。详细的开始讲解了:

单独以f1为例:

def w1(func):
  def inner():
    # 验证1
    # 验证2
    # 验证3
    return func()
  return inner
@w1
def f1():
  print 'f1'

当写完这段代码后(函数未被执行、未被执行、未被执行),python解释器就会从上到下解释代码,步骤如下:

def w1(func): ==>将w1函数加载到内存
@w1

没错,从表面上看解释器仅仅会解释这两句代码,因为函数在没有被调用之前其内部代码不会被执行。

从表面上看解释器着实会执行这两句,但是 @w1 这一句代码里却有大文章,@函数名 是python的一种语法糖。

如上例@w1内部会执行一下操作:

  • 执行w1函数,并将 @w1 下面的 函数 作为w1函数的参数,即:@w1 等价于 w1(f1)
    所以,内部就会去执行:

      def inner:
        #验证
        return f1()  # func是参数,此时 func 等于 f1
      return inner   # 返回的 inner,inner代表的是函数,非执行函数

  • 其实就是将原来的 f1 函数塞进另外一个函数中
  • 将执行完的 w1 函数返回值赋值给@w1下面的函数的函数名
    w1函数的返回值是:
       def inner:
            #验证
            return 原来f1()  # 此处的 f1 表示原来的f1函数
    然后,将此返回值再重新赋值给 f1,即:
    新f1 = def inner:
                #验证
                return 原来f1() 
    所以,以后业务部门想要执行 f1 函数时,就会执行 新f1 函数,在 新f1 函数内部先执行验证,再执行原来的f1函数,然后将 原来f1 函数的返回值 返回给了业务调用者。
    如此一来, 即执行了验证的功能,又执行了原来f1函数的内容,并将原f1函数返回值 返回给业务调用着

Low BBB 你明白了吗?要是没明白的话,我晚上去你家帮你解决吧!!!

先把上述流程看懂,之后还会继续更新...

3、问答时间

问题:被装饰的函数如果有参数呢?

一个参数:

def w1(func):
  def inner(arg):
    # 验证1
    # 验证2
    # 验证3
    return func(arg)
  return inner

@w1
def f1(arg):
  print 'f1'

两个参数:

def w1(func):
  def inner(arg1,arg2):
    # 验证1
    # 验证2
    # 验证3
    return func(arg1,arg2)
  return inner

@w1
def f1(arg1,arg2):
  print 'f1'

三个参数:

def w1(func):
  def inner(arg1,arg2,arg3):
    # 验证1
    # 验证2
    # 验证3
    return func(arg1,arg2,arg3)
  return inner

@w1
def f1(arg1,arg2,arg3):
  print 'f1'

问题:可以装饰具有处理n个参数的函数的装饰器?

def w1(func):
  def inner(*args,**kwargs):
    # 验证1
    # 验证2
    # 验证3
    return func(*args,**kwargs)
  return inner

@w1
def f1(arg1,arg2,arg3):
  print 'f1'

问题:一个函数可以被多个装饰器装饰吗?

def w1(func):
  def inner(*args,**kwargs):
    # 验证1
    # 验证2
    # 验证3
    return func(*args,**kwargs)
  return inner

def w2(func):
  def inner(*args,**kwargs):
    # 验证1
    # 验证2
    # 验证3
    return func(*args,**kwargs)
  return inner

@w1
@w2
def f1(arg1,arg2,arg3):
  print 'f1'

问题:还有什么更吊的装饰器吗?

#!/usr/bin/env python
#coding:utf-8

def Before(request,kargs):
  print 'before'

def After(request,kargs):
  print 'after'

def Filter(before_func,after_func):
  def outer(main_func):
    def wrapper(request,kargs):

      before_result = before_func(request,kargs)
      if(before_result != None):
        return before_result;

      main_result = main_func(request,kargs)
      if(main_result != None):
        return main_result;

      after_result = after_func(request,kargs)
      if(after_result != None):
        return after_result;

    return wrapper
  return outer

@Filter(Before, After)
def Index(request,kargs):
  print 'index'

4、functools.wraps

上述的装饰器虽然已经完成了其应有的

功能,即:装饰器内的函数代指了原函数,注意其只是代指而非相等,原函数的元信息没有被赋值到装饰器函数内部。例如:函数的注释信息

无元信息:

def outer(func):
  def inner(*args, **kwargs):
    print(inner.__doc__) # None
    return func()
  return inner

@outer
def function():
  """
  asdfasd
  :return:
  """
  print('func')

如果使用@functools.wraps装饰装饰器内的函数,那么就会代指元信息和函数。

含元信息:

def outer(func):
  @functools.wraps(func)
  def inner(*args, **kwargs):
    print(inner.__doc__) # None
    return func()
  return inner

@outer
def function():
  """
  asdfasd
  :return:
  """
  print('func')

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python面向对象程序设计入门与进阶教程》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python编码操作技巧总结》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • 实例讲解Python编程中@property装饰器的用法

    取值和赋值 class Actress(): def __init__(self): self.name = 'TianXin' self.age = 5 类Actress中有两个成员变量name和age.在外部对类的成员变量的操作,主要包括取值和赋值.简单的取值操作是x=object.var,简单的赋值操作是object.var=value. >>> actress = Actress() >>> actress.name #取值操作 'TianXin' >&g

  • python装饰器使用方法实例

    什么是python的装饰器? 网络上的定义:装饰器就是一函数,用来包装函数的函数,用来修饰原函数,将其重新赋值给原来的标识符,并永久的丧失原函数的引用. 最能说明装饰器的例子如下: 复制代码 代码如下: #-*- coding: UTF-8 -*-import time def foo():    print 'in foo()' # 定义一个计时器,传入一个,并返回另一个附加了计时功能的方法def timeit(func): # 定义一个内嵌的包装函数,给传入的函数加上计时功能的包装    d

  • Python装饰器用法实例总结

    本文实例讲述了Python装饰器用法.分享给大家供大家参考,具体如下: 一.装饰器是什么 python的装饰器本质上是一个Python函数,它可以让其他函数在不需要做任何代码变动的前提下增加额外功能,装饰器的返回值也是一个函数对象.简单的说装饰器就是一个用来返回函数的函数. 它经常用于有切面需求的场景,比如:插入日志.性能测试.事务处理.缓存.权限校验等场景.装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量与函数功能本身无关的雷同代码并继续重用. 概括的讲,装饰器的作用就是为已经

  • python装饰器简介---这一篇也许就够了(推荐)

    Python装饰器(decorator)是在程序开发中经常使用到的功能,合理使用装饰器,能让我们的程序如虎添翼. 装饰器引入 初期及问题诞生 假如现在在一个公司,有A B C三个业务部门,还有S一个基础服务部门,目前呢,S部门提供了两个函数,供其他部门调用,函数如下: def f1(): print('f1 called') def f2(): print('f2 called') 在初期,其他部门这样调用是没有问题的,随着公司业务的发展,现在S部门需要对函数调用假如权限验证,如果有权限的话,才

  • python 一篇文章搞懂装饰器所有用法(建议收藏)

    01. 装饰器语法糖 如果你接触 Python 有一段时间了的话,想必你对 @ 符号一定不陌生了,没错 @ 符号就是装饰器的语法糖. 它放在一个函数开始定义的地方,它就像一顶帽子一样戴在这个函数的头上.和这个函数绑定在一起.在我们调用这个函数的时候,第一件事并不是执行这个函数,而是将这个函数做为参数传入它头顶上这顶帽子,这顶帽子我们称之为装饰函数 或 装饰器. 你要问我装饰器可以实现什么功能?我只能说你的脑洞有多大,装饰器就有多强大. 装饰器的使用方法很固定: 先定义一个装饰函数(帽子)(也可以

  • 巧用Python装饰器 免去调用父类构造函数的麻烦

    先看一段代码: 复制代码 代码如下: class T1(threading.Thread): def __init__(self, a, b, c): super(T1, self).__init__() self.a = a self.b = b self.c = c def run(self): print self.a, self.b, self.c 代码定义了一个继承自threading.Thread的class,看这句 super(T1, self).__init__() 也有些人喜欢

  • 详解Python中的装饰器、闭包和functools的教程

    装饰器(Decorators) 装饰器是这样一种设计模式:如果一个类希望添加其他类的一些功能,而不希望通过继承或是直接修改源代码实现,那么可以使用装饰器模式.简单来说Python中的装饰器就是指某些函数或其他可调用对象,以函数或类作为可选输入参数,然后返回函数或类的形式.通过这个在Python2.6版本中被新加入的特性可以用来实现装饰器设计模式. 顺便提一句,在继续阅读之前,如果你对Python中的闭包(Closure)概念不清楚,请查看本文结尾后的附录,如果没有闭包的相关概念,很难恰当的理解P

  • python重试装饰器示例

    利用python 写一些网络服务的时候,当网络状况不好,或者资源占用过多,任务拥塞的情况下,总会抛出一些异常,当前任务就被终止了,可以很好的利用@装饰器,写一个重试的装饰器,这样比较python!执行结果: 复制代码 代码如下: WARNING:root:timed out, Retrying in 3 seconds...WARNING:root:timed out, Retrying in 6 seconds...WARNING:root:timed out, Retrying in 12

  • 介绍Python的@property装饰器的用法

    在绑定属性时,如果我们直接把属性暴露出去,虽然写起来很简单,但是,没办法检查参数,导致可以把成绩随便改: s = Student() s.score = 9999 这显然不合逻辑.为了限制score的范围,可以通过一个set_score()方法来设置成绩,再通过一个get_score()来获取成绩,这样,在set_score()方法里,就可以检查参数: class Student(object): def get_score(self): return self._score def set_s

  • 详解Python装饰器由浅入深

    装饰器的功能在很多语言中都有,名字也不尽相同,其实它体现的是一种设计模式,强调的是开放封闭原则,更多的用于后期功能升级而不是编写新的代码.装饰器不光能装饰函数,也能装饰其他的对象,比如类,但通常,我们以装饰函数为例子介绍其用法.要理解在Python中装饰器的原理,需要一步一步来.本文尽量描述得浅显易懂,从最基础的内容讲起. (注:以下使用Python3.5.1环境) 一.Python的函数相关基础 第一,必须强调的是python是从上往下顺序执行的,而且碰到函数的定义代码块是不会立即执行它的,只

  • Python中的各种装饰器详解

    Python装饰器,分两部分,一是装饰器本身的定义,一是被装饰器对象的定义. 一.函数式装饰器:装饰器本身是一个函数. 1.装饰函数:被装饰对象是一个函数 [1]装饰器无参数: a.被装饰对象无参数: 复制代码 代码如下: >>> def test(func):     def _test():         print 'Call the function %s().'%func.func_name         return func()     return _test >

  • 深入理解python中的闭包和装饰器

    python中的闭包从表现形式上定义(解释)为:如果在一个内部函数里,对在外部作用域(但不是在全局作用域)的变量进行引用,那么内部函数就被认为是闭包(closure). 以下说明主要针对 python2.7,其他版本可能存在差异. 也许直接看定义并不太能明白,下面我们先来看一下什么叫做内部函数: def wai_hanshu(canshu_1): def nei_hanshu(canshu_2): # 我在函数内部有定义了一个函数 return canshu_1*canshu_2 return

随机推荐