java实现Dijkstra算法

本文实例为大家分享了java实现Dijkstra算法的具体代码,供大家参考,具体内容如下

1 问题描述

何为Dijkstra算法?

Dijkstra算法功能:给出加权连通图中一个顶点,称之为起点,找出起点到其它所有顶点之间的最短距离。

Dijkstra算法思想:采用贪心法思想,进行n-1次查找(PS:n为加权连通图的顶点总个数,除去起点,则剩下n-1个顶点),第一次进行查找,找出距离起点最近的一个顶点,标记为已遍历;下一次进行查找时,从未被遍历中的顶点寻找距离起点最近的一个顶点, 标记为已遍历;直到n-1次查找完毕,结束查找,返回最终结果。

2 解决方案

2.1 使用Dijkstra算法得到最短距离示例

此处借用文末参考资料1博客中一个插图(PS:个人感觉此图描述简单易懂):

2.2 具体编码

Dijkstra复杂度是O(N^2),如果用binary heap优化可以达到O((E+N)logN),用fibonacci heap可以优化到O(NlogN+E) 。

注意,Dijkstra算法只能应用于不含负权值的图。因为在大多数应用中这个条件都满足,所以这种局限性并没有影响Dijkstra算法的广泛应用。

其次,大家要注意把Dijkstra算法与寻找最小生成树的Prim算法区分开来。两者都是运行贪心法思想,但是Dijkstra算法是比较路径的长度,所以必须把起点到相应顶点之间的边的权重相加,而Prim算法则是直接比较相应边给定的权重。

下面的代码时间复杂度为O(N^2),代码中所用图为2.1使用Dijkstra算法得到最短距离示例中所给的图。

package com.liuzhen.chapter9;

public class Dijkstra {
  /*
   * 参数adjMatrix:为图的权重矩阵,权值为-1的两个顶点表示不能直接相连
   * 函数功能:返回顶点0到其它所有顶点的最短距离,其中顶点0到顶点0的最短距离为0
   */
  public int[] getShortestPaths(int[][] adjMatrix) {
    int[] result = new int[adjMatrix.length];  //用于存放顶点0到其它顶点的最短距离
    boolean[] used = new boolean[adjMatrix.length]; //用于判断顶点是否被遍历
    used[0] = true; //表示顶点0已被遍历
    for(int i = 1;i < adjMatrix.length;i++) {
      result[i] = adjMatrix[0][i];
      used[i] = false;
    }

    for(int i = 1;i < adjMatrix.length;i++) {
      int min = Integer.MAX_VALUE;  //用于暂时存放顶点0到i的最短距离,初始化为Integer型最大值
      int k = 0;
      for(int j = 1;j < adjMatrix.length;j++) { //找到顶点0到其它顶点中距离最小的一个顶点
        if(!used[j] && result[j] != -1 && min > result[j]) {
          min = result[j];
          k = j;
        }
      }
      used[k] = true;  //将距离最小的顶点,记为已遍历
      for(int j = 1;j < adjMatrix.length;j++) { //然后,将顶点0到其它顶点的距离与加入中间顶点k之后的距离进行比较,更新最短距离
        if(!used[j]) { //当顶点j未被遍历时
          //首先,顶点k到顶点j要能通行;这时,当顶点0到顶点j的距离大于顶点0到k再到j的距离或者顶点0无法直接到达顶点j时,更新顶点0到顶点j的最短距离
          if(adjMatrix[k][j] != -1 && (result[j] > min + adjMatrix[k][j] || result[j] == -1))
            result[j] = min + adjMatrix[k][j];
        }
      }
    }
    return result;
  }

  public static void main(String[] args) {
    Dijkstra test = new Dijkstra();
    int[][] adjMatrix = {{0,6,3,-1,-1,-1},
        {6,0,2,5,-1,-1},
        {3,2,0,3,4,-1},
        {-1,5,3,0,2,3},
        {-1,-1,4,2,0,5},
        {-1,-1,-1,3,5,0}};
    int[] result = test.getShortestPaths(adjMatrix);
    System.out.println("顶点0到图中所有顶点之间的最短距离为:");
    for(int i = 0;i < result.length;i++)
      System.out.print(result[i]+" ");
  }
}

运行结果:

顶点0到图中所有顶点之间的最短距离为:
0 5 3 6 7 9

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • java实现dijkstra最短路径寻路算法

    [引用]迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径. 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止. 基本思想 通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算). 此外,引进两个集合S和U.S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离). 初始时,S中只有起点s:U中是除s之外的顶点,并且U中顶点的路径是

  • 基于Java实现的Dijkstra算法示例

    本文以实例形式介绍了基于Java实现的Dijkstra算法,相信对于读者研究学习数据结构域算法有一定的帮助. Dijkstra提出按各顶点与源点v间的路径长度的递增次序,生成到各顶点的最短路径的算法.即先求出长度最短的一条最短路径,再参照它求出长度次短的一条最短路径,依次类推,直到从源点v 到其它各顶点的最短路径全部求出为止. 其代码实现如下所示: package com.algorithm.impl; public class Dijkstra { private static int M =

  • java实现Dijkstra最短路径算法

    任务描述:在一个无向图中,获取起始节点到所有其他节点的最短路径描述 Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表方式 用OPEN,CLOSE表的方式,其采用的是贪心法的算法策略,大概过程如下: 1.声明两个集合,open和close,open用于存储未遍历的节点,close用来存储

  • Java实现Dijkstra输出最短路径的实例

    Java实现Dijkstra输出指定起点到终点的最短路径 前言: 最近在公司参加了一个比赛,其中涉及的一个问题,可以简化成如是描述:一个二维矩阵,每个点都有权重,需要找出从指定起点到终点的最短路径. 马上就想到了Dijkstra算法,所以又重新温故了一遍,这里给出Java的实现. 而输出最短路径的时候,在网上也进行了查阅,没发现什么标准的方法,于是在下面的实现中,我给出了一种能够想到的比较精简的方式:利用prev[]数组进行递归输出. package graph.dijsktra; import

  • java使用Dijkstra算法实现单源最短路径

    单源最短路径问题,即在图中求出给定顶点到其它任一顶点的最短路径.在弄清楚如何求算单源最短路径问题之前,必须弄清楚最短路径的最优子结构性质. 一.最短路径的最优子结构性质 该性质描述为:如果P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,k和s是这条路径上的中间顶点,那么P(k,s)必定是从k到s的最短路径.下面证明该性质的正确性. 假设P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,则有P(i,j)=P(i,k)+P(k,s)+P(s,

  • java实现最短路径算法之Dijkstra算法

    前言 Dijkstra算法是最短路径算法中为人熟知的一种,是单起点全路径算法.该算法被称为是"贪心算法"的成功典范.本文接下来将尝试以最通俗的语言来介绍这个伟大的算法,并赋予java实现代码. 一.知识准备: 1.表示图的数据结构 用于存储图的数据结构有多种,本算法中笔者使用的是邻接矩阵. 图的邻接矩阵存储方式是用两个数组来表示图.一个一维数组存储图中顶点信息,一个二维数组(邻接矩阵)存储图中的边或弧的信息. 设图G有n个顶点,则邻接矩阵是一个n*n的方阵,定义为: 从上面可以看出,无

  • java实现Dijkstra算法

    本文实例为大家分享了java实现Dijkstra算法的具体代码,供大家参考,具体内容如下 1 问题描述 何为Dijkstra算法? Dijkstra算法功能:给出加权连通图中一个顶点,称之为起点,找出起点到其它所有顶点之间的最短距离. Dijkstra算法思想:采用贪心法思想,进行n-1次查找(PS:n为加权连通图的顶点总个数,除去起点,则剩下n-1个顶点),第一次进行查找,找出距离起点最近的一个顶点,标记为已遍历:下一次进行查找时,从未被遍历中的顶点寻找距离起点最近的一个顶点, 标记为已遍历:

  • Java实现Dijkstra算法的示例代码

    目录 一 问题描述 二 实现 三 测试 一 问题描述 小明为位置1,求他到其他各顶点的距离. 二 实现 package graph.dijkstra; import java.util.Scanner; import java.util.Stack; public class Dijkstra { static final int MaxVnum = 100; // 顶点数最大值 static final int INF = 0x3f3f3f3f; //无穷大 static final int

  • Java利用Dijkstra算法求解拓扑关系最短路径

    目录 算法简介 代码实现思路 算法思想 代码示例 算法简介 迪杰斯特拉算法(Dijkstra)是由荷兰计算机科学迪家迪杰斯特拉于1959年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点最短路劲算法,解决的是有权图中最短路径问题.迪杰斯特拉算法主要特点是从起始点开始,采用贪心算法的策略,每次遍历到始点距离最近且未访问过的顶点的邻接节点,直到扩展到终点为止. 代码实现思路 1.先初始化源节点(起始点)到其他各个拓扑节点的最短距离,可以用map存放,key为节点,value为节点到源节点的距

  • Java基于Dijkstra算法实现校园导游程序

    本文实例为大家分享了Dijkstra算法实现校园导游程序的具体代码,供大家参考,具体内容如下 应用设计性实验 1.问题描述 校网导游程序: 一个校园有若干景点,如正校门.人工湖.磁悬浮列车实验室.樱花大道.图书馆.体育场体育馆和礼堂等.实现一个为来访客 人提供信息在询服务的程序,如查询景点的详细信息,查询两个景点之间的一条最短路径. 2.实验要求 (1)设计你所在学校的校园平面图,所含景点不少于10个.(2)来访客人可以输人任一个景点的名称,查询景点的详细信息.(3)来访客人可以输人任何两个景点

  • 详解Java中Dijkstra(迪杰斯特拉)算法的图解与实现

    目录 简介 工作过程 总体思路 实现 小根堆 Dijsktra 测试 简介 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等.注意该算法要求图中不存在负权边.对应问题:在无向图G=(V,E)中,假设每条边E(i)的长度W(i),求由顶点V0到各节点的最短路径. 工作过

随机推荐