浅谈matplotlib 绘制梯度下降求解过程

机器学习过程中经常需要可视化,有助于加强对模型和参数的理解。

下面对梯度下降过程进行动图演示,可以修改不同的学习率,观看效果。

import numpy as np
import matplotlib.pyplot as plt
from IPython import display

X = 2*np.random.rand(100,1)
y = 4+3*X+np.random.randn(100,1) # randn正态分布
X_b = np.c_[np.ones((100,1)),X] # c_行数相等,左右拼接

eta = 0.1 # 学习率
n_iter = 1000 # 迭代次数
m = 100 # 样本点个数
theta = np.random.randn(2,1) # 参数初始值

plt.figure(figsize=(8,6))
mngr = plt.get_current_fig_manager() # 获取当前figure manager
mngr.window.wm_geometry("+520+520") # 调整窗口在屏幕上弹出的位置,注意写在打开交互模式之前
# 上面固定窗口,方便screentogif定位录制,只会这种弱弱的方法
plt.ion()# 打开交互模式
plt.rcParams["font.sans-serif"] = "SimHei"# 消除中文乱码

for iter in range(n_iter):
  plt.cla() # 清除原图像

  gradients = 2/m*X_b.T.dot(X_b.dot(theta)-y)
  theta = theta - eta*gradients
  X_new = np.array([[0],[2]])
  X_new_b = np.c_[np.ones((2,1)),X_new]
  y_pred = X_new_b.dot(theta)

  plt.axis([0,2,0,15])
  plt.plot(X,y,"b.")
  plt.plot(X_new,y_pred,"r-")
  plt.title("学习率:{:.2f}".format(eta))
  plt.pause(0.3) # 暂停一会
  display.clear_output(wait=True)# 刷新图像

plt.ioff()# 关闭交互模式
plt.show()

学习率:0.1,较合适

学习率:0.02,收敛变慢了

学习率:0.45,在最佳参数附近震荡

学习率:0.5,不收敛

到此这篇关于浅谈matplotlib 绘制梯度下降求解过程的文章就介绍到这了,更多相关matplotlib 梯度下降内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python使用matplotlib绘制动画的方法

    本文实例讲述了Python使用matplotlib绘制动画的方法.分享给大家供大家参考.具体分析如下: matplotlib从1.1.0版本以后就开始支持绘制动画 下面是几个的示例: 第一个例子使用generator,每隔两秒,就运行函数data_gen: # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation fig =

  • python中Matplotlib实现绘制3D图的示例代码

    Matplotlib 也可以绘制 3D 图像,与二维图像不同的是,绘制三维图像主要通过 mplot3d 模块实现.但是,使用 Matplotlib 绘制三维图像实际上是在二维画布上展示,所以一般绘制三维图像时,同样需要载入 pyplot 模块. mplot3d 模块下主要包含 4 个大类,分别是: mpl_toolkits.mplot3d.axes3d() mpl_toolkits.mplot3d.axis3d() mpl_toolkits.mplot3d.art3d() mpl_toolkit

  • python绘图库Matplotlib的安装

    本文简单介绍了Python绘图库Matplotlib的安装,简介如下: matplotlib是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地 进行制图.Matplotlib的安装可以参见:官网链接 http://matplotlib.org/users/installing.html 安装总结步骤如下: windows 平台上下载.exe格式 直接安装. 1.python下载安装 下载地址:http://www.python.org/download/

  • python学习之matplotlib绘制散点图实例

    要绘制单个点,可使用函数scatter(),并向其传递一对x和y坐标,它将在指定位置绘制一个点: """使用scatter()绘制散点图""" import matplotlib.pyplot as plt plt.scatter(2, 4) plt.show() 下面来设置输出的样式:添加标题,给轴加上标签,并确保所有文本都大到能够看清.并使用scatter()绘制一系列点 """使用scatter()绘制散点图&

  • Python利用matplotlib.pyplot绘图时如何设置坐标轴刻度

    前言 matplotlib.pyplot是一些命令行风格函数的集合,使matplotlib以类似于MATLAB的方式工作.每个pyplot函数对一幅图片(figure)做一些改动:比如创建新图片,在图片创建一个新的作图区域(plotting area),在一个作图区域内画直线,给图添加标签(label)等.matplotlib.pyplot是有状态的,亦即它会保存当前图片和作图区域的状态,新的作图函数会作用在当前图片的状态基础之上. 在开始本文之前,不熟悉的朋友可以先看看这篇文章:Python

  • python Matplotlib画图之调整字体大小的示例

    一张字体调整好的示例图: 字体大小就是 fontsize 参数 import matplotlib.pyplot as plt # 代码中的"..."代表省略的其他参数 ax = plt.subplot(111) # 设置刻度字体大小 plt.xticks(fontsize=20) plt.yticks(fontsize=20) # 设置坐标标签字体大小 ax.xlabel(..., fontsize=20) ax.ylabel(..., fontsize=20) # 设置图例字体大小

  • python matplotlib坐标轴设置的方法

    在使用matplotlib模块时画坐标图时,往往需要对坐标轴设置很多参数,这些参数包括横纵坐标轴范围.坐标轴刻度大小.坐标轴名称等 在matplotlib中包含了很多函数,用来对这些参数进行设置. 我们可以对坐标轴进行设置,设置坐标轴的范围,设置坐标轴上的文字描述等. 基本用法 例如: import numpy as np import pandas as pd import matplotlib.pyplot as plt # 生成x轴上的数据:从-3到3,总共有50个点 x = np.lin

  • 学习python中matplotlib绘图设置坐标轴刻度、文本

    总结matplotlib绘图如何设置坐标轴刻度大小和刻度. 上代码: from pylab import * from matplotlib.ticker import MultipleLocator, FormatStrFormatter xmajorLocator = MultipleLocator(20) #将x主刻度标签设置为20的倍数 xmajorFormatter = FormatStrFormatter('%1.1f') #设置x轴标签文本的格式 xminorLocator = M

  • matplotlib设置legend图例代码示例

    本文主要是关于matplotlib的一些基本用法. Demo import matplotlib.pyplot as plt import numpy as np # 绘制普通图像 x = np.linspace(-1, 1, 50) y1 = 2 * x + 1 y2 = x**2 plt.figure() # 在绘制时设置lable, 逗号是必须的 l1, = plt.plot(x, y1, label = 'line') l2, = plt.plot(x, y2, label = 'par

  • Python设置matplotlib.plot的坐标轴刻度间隔以及刻度范围

    一.用默认设置绘制折线图 import matplotlib.pyplot as plt x_values=list(range(11)) #x轴的数字是0到10这11个整数 y_values=[x**2 for x in x_values] #y轴的数字是x轴数字的平方 plt.plot(x_values,y_values,c='green') #用plot函数绘制折线图,线条颜色设置为绿色 plt.title('Squares',fontsize=24) #设置图表标题和标题字号 plt.t

  • 用matplotlib画等高线图详解

    等高线图是在地理课中讲述山峰山谷时绘制的图形,在机器学习中也会被用在绘制梯度下降算法的图形中. 因为等高线的图有三个信息:x,y以及x,y所对应的高度值. 这个高度值的计算我们用一个函数来表述: 计算x,y坐标对应的高度值 def f(x, y): return (1-x/2+x**5+y**3) * np.exp(-x**2-y**2) 这个函数看起来挺复杂的,但我们这里只是为了能够获得一个高度值,因此其中函数代表什么意义不用关心,只要知道输入一个x,y,输出一个高度值就可以了. 要画出等高线

随机推荐