pytorch 液态算法实现瘦脸效果

论文:Interactive Image Warping(1993年Andreas Gustafsson)

算法思路:

假设当前点为(x,y),手动指定变形区域的中心点为C(cx,cy),变形区域半径为r,手动调整变形终点(从中心点到某个位置M)为M(mx,my),变形程度为strength,当前点对应变形后的目标位置为U。变形规律如下,

  • 圆内所有像素均沿着变形向量的方向发生偏移
  • 距离圆心越近,变形程度越大
  • 距离圆周越近,变形程度越小,当像素点位于圆周时,该像素不变形
  • 圆外像素不发生偏移

其中,x是圆内任意一点坐标,c是圆心点,rmax为圆心半径,m为调整变形的终点,u为圆内任意一点x对应的变形后的位置。

对上面公式进行改进,加入变形程度控制变量strength,改进后瘦脸公式如下,

优缺点:

优点:形变思路简单直接

缺点:

  • 局部变形算法,只能基于一个中心点,向另外一个点的方向啦。如果想多个点一起拉伸,只能每个点分别做一次液化,通过针对多个部位多次液化来实现。
  • 单点拉伸的变形,可以实现瘦脸的效果,但是效果自然度有待提升。

代码实现:

import cv2
import math
import numpy as np

def localTranslationWarpFastWithStrength(srcImg, startX, startY, endX, endY, radius, strength):
    ddradius = float(radius * radius)
    copyImg = np.zeros(srcImg.shape, np.uint8)
    copyImg = srcImg.copy()

    maskImg = np.zeros(srcImg.shape[:2], np.uint8)
    cv2.circle(maskImg, (startX, startY), math.ceil(radius), (255, 255, 255), -1)

    K0 = 100/strength

    # 计算公式中的|m-c|^2
    ddmc_x = (endX - startX) * (endX - startX)
    ddmc_y = (endY - startY) * (endY - startY)
    H, W, C = srcImg.shape

    mapX = np.vstack([np.arange(W).astype(np.float32).reshape(1, -1)] * H)
    mapY = np.hstack([np.arange(H).astype(np.float32).reshape(-1, 1)] * W)

    distance_x = (mapX - startX) * (mapX - startX)
    distance_y = (mapY - startY) * (mapY - startY)
    distance = distance_x + distance_y
    K1 = np.sqrt(distance)
    ratio_x = (ddradius - distance_x) / (ddradius - distance_x + K0 * ddmc_x)
    ratio_y = (ddradius - distance_y) / (ddradius - distance_y + K0 * ddmc_y)
    ratio_x = ratio_x * ratio_x
    ratio_y = ratio_y * ratio_y

    UX = mapX - ratio_x * (endX - startX) * (1 - K1/radius)
    UY = mapY - ratio_y * (endY - startY) * (1 - K1/radius)

    np.copyto(UX, mapX, where=maskImg == 0)
    np.copyto(UY, mapY, where=maskImg == 0)
    UX = UX.astype(np.float32)
    UY = UY.astype(np.float32)
    copyImg = cv2.remap(srcImg, UX, UY, interpolation=cv2.INTER_LINEAR)

    return copyImg

image = cv2.imread("./tests/images/klst.jpeg")
processed_image = image.copy()
startX_left, startY_left, endX_left, endY_left = 101, 266, 192, 233
startX_right, startY_right, endX_right, endY_right = 287, 275, 192, 233
radius = 45
strength = 100
# 瘦左边脸
processed_image = localTranslationWarpFastWithStrength(processed_image, startX_left, startY_left, endX_left, endY_left, radius, strength)
# 瘦右边脸
processed_image = localTranslationWarpFastWithStrength(processed_image, startX_right, startY_right, endX_right, endY_right, radius, strength)
cv2.imwrite("thin.jpg", processed_image)

实验效果:

到此这篇关于pytorch 液态算法实现瘦脸效果的文章就介绍到这了,更多相关pytorch 液态算法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • pytorch 实现将自己的图片数据处理成可以训练的图片类型

    为了使用自己的图像数据,需要仿照pytorch数据输入创建新的类,其中数据格式为numpy.ndarray. 将自己的图片保存到numpy.ndarray中,然后创建类 from torch.utils.data import Dataset import numpy as np class Dataset(Dataset): def __init__(self, path_img, path_target, transforms=None): self.train = path_img sel

  • Python深度学习pytorch实现图像分类数据集

    目录 读取数据集 读取小批量 整合所有组件 目前广泛使用的图像分类数据集之一是MNIST数据集.如今,MNIST数据集更像是一个健全的检查,而不是一个基准. 为了提高难度,我们将在接下来的章节中讨论在2017年发布的性质相似但相对复杂的Fashion-MNIST数据集. import torch import torchvision from torch.utils import data from torchvision import transforms from d2l import to

  • pytorch 液态算法实现瘦脸效果

    论文:Interactive Image Warping(1993年Andreas Gustafsson) 算法思路: 假设当前点为(x,y),手动指定变形区域的中心点为C(cx,cy),变形区域半径为r,手动调整变形终点(从中心点到某个位置M)为M(mx,my),变形程度为strength,当前点对应变形后的目标位置为U.变形规律如下, 圆内所有像素均沿着变形向量的方向发生偏移 距离圆心越近,变形程度越大 距离圆周越近,变形程度越小,当像素点位于圆周时,该像素不变形 圆外像素不发生偏移 其中,

  • pytorch 液态算法实现瘦脸效果

    论文:Interactive Image Warping(1993年Andreas Gustafsson) 算法思路: 假设当前点为(x,y),手动指定变形区域的中心点为C(cx,cy),变形区域半径为r,手动调整变形终点(从中心点到某个位置M)为M(mx,my),变形程度为strength,当前点对应变形后的目标位置为U.变形规律如下, 圆内所有像素均沿着变形向量的方向发生偏移 距离圆心越近,变形程度越大 距离圆周越近,变形程度越小,当像素点位于圆周时,该像素不变形 圆外像素不发生偏移 其中,

  • pytorch 膨胀算法实现大眼效果

    目录 算法思路: 应用场景: 代码实现: 实验效果:  论文:Interactive Image Warping(1993年Andreas Gustafsson) 算法思路: 以眼睛中心为中心点,对眼睛区域向外放大,就实现了大眼的效果.大眼的基本公式如下, 假设眼睛中心点为O(x,y),大眼区域半径为Radius,当前点位为A(x1,y1),对其进行改进,加入大眼程度控制变量Intensity,其中Intensity的取值范围为0-100.  其中,dis表示AO的欧式距离,k表示缩放比例因子,

  • JavaScript排序算法动画演示效果的实现方法

    之前在知乎看到有人在问 自己写了一个冒泡排序算法如何用HTML,CSS,JavaScript展现出来排序过程.   感觉这个问题还挺有意思 .前些时间就来写了一个.这里记录一下实现过程. 基本的思想是把排序每一步的时候每个数据的值用DOM结构表达出来. 问题一:如何将JavaScript排序的一步步进程展现出来? 我试过的几种思路: 1.让JavaScript暂停下来,慢下来. JavaScript排序是很快的,要我们肉眼能看到它的实现过程,我首先想到的是让排序慢下来. 排序的每一个循环都让它停

  • Python强化练习之PyTorch opp算法实现月球登陆器

    目录 概述 强化学习算法种类 PPO 算法 Actor-Critic 算法 Gym LunarLander-v2 启动登陆器 PPO 算法实现月球登录器 PPO main 输出结果 概述 从今天开始我们会开启一个新的篇章, 带领大家来一起学习 (卷进) 强化学习 (Reinforcement Learning). 强化学习基于环境, 分析数据采取行动, 从而最大化未来收益. 强化学习算法种类 On-policy vs Off-policy: On-policy: 训练数据由当前 agent 不断

  • 利用PyTorch实现爬山算法

    目录 0. 前言 1. 使用 PyTorch 实现爬山算法 1.1 爬山算法简介 1.2 使用爬山算法进行 CartPole 游戏 2. 改进爬山算法 0. 前言 在随机搜索策略中,每个回合都是独立的.因此,随机搜索中的所有回合都可以并行运行,最终选择能够得到最佳性能的权重.我们还通过绘制总奖励随回合增加的变化情况进行验证,可以看到奖励并没有上升的趋势.在本节中,我们将实现爬山算法 (hill-climbing algorithm),以将在一个回合中学习到的知识转移到下一个回合中. 1. 使用

  • PyTorch策略梯度算法详情

    目录 0. 前言 1. 策略梯度算法 2. 使用策略梯度算法解决CartPole问题 0. 前言 本节中,我们使用策略梯度算法解决 CartPole 问题.虽然在这个简单问题中,使用随机搜索策略和爬山算法就足够了.但是,我们可以使用这个简单问题来更专注的学习策略梯度算法,并在之后的学习中使用此算法解决更加复杂的问题. 1. 策略梯度算法 策略梯度算法通过记录回合中的所有时间步并基于回合结束时与这些时间步相关联的奖励来更新权重训练智能体.使智能体遍历整个回合然后基于获得的奖励更新策略的技术称为蒙特

  • PHP Hash算法:Times33算法代码实例

    最近看书,里面提到了一些Hash算法.比较有印象的是Times33,当时理解不是很透测,今天写了段程序来验证了一下. 先上代码: 复制代码 代码如下: <?php /**  * CRC32 Hash function  * @param $str  * @return int  */ function hash32($str) {     return crc32($str) >> 16 & 0x7FFFFFFF; } /**  * Times33 Hash function  

  • php lcg_value与mt_rand生成0~1随机小数的效果对比分析

    因工作需要使用php生成0~1随机小数,之前写过一篇<php生成0~1随机小数方法>,基于mt_rand()及mt_getrandmax()实现. 后来有网友评论,php原生方法lcg_value()可实现0~1随机小数生成. lcg_value说明 float lcg_value ( void ) lcg_value() 返回范围为 (0, 1) 的一个伪随机数.本函数组合了周期为 2^31 - 85 和 2^31 - 249 的两个同余发生器.本函数的周期等于这两个素数的乘积. 返回:范围

  • Python实现PS滤镜中马赛克效果示例

    本文实例讲述了Python实现PS滤镜中马赛克效果.分享给大家供大家参考,具体如下: 这里利用 Python 实现PS 滤镜中的马赛克效果,具体的算法原理和效果可以参考附录说明,Python示例代码如下: from skimage import img_as_float import matplotlib.pyplot as plt from skimage import io import random import numpy as np file_name='D:/Visual Effec

随机推荐