Python可视化神器pyecharts绘制折线图详情

目录
  • 折线图介绍
  • 折线图模板系列
    • 双折线图(气温最高最低温度趋势显示)
    • 面积折线图(紧贴Y轴)
    • 简单折线图(无动态和数据标签)
    • 连接空白数据折线图
    • 对数轴折线图示例
    • 折线图堆叠(适合多个折线图展示)
    • 二维曲线折线图(两个数据)
    • 多维度折线图(颜色对比)
    • 阶梯折线图
    • js高渲染折线图

折线图介绍

折线图和柱状图一样是我们日常可视化最多的一个图例,当然它的优势和适用场景相信大家肯定不陌生,要想快速的得出趋势,抓住趋势二字,就会很快的想到要用折线图来表示了。折线图是通过直线将这些点按照某种顺序连接起来形成的图,适用于数据在一个有序的因变量上的变化,它的特点是反应事物随类别而变化的趋势,可以清晰展现数据的增减趋势、增减的速率、增减的规律、峰值等特征。

优点

  • 能很好的展现沿某个维度的变化趋势
  • 能比较多组数据在同一个维度上的趋势
  • 适合展现较大数据集

缺点:每张图上不适合展示太多折线

折线图模板系列

双折线图(气温最高最低温度趋势显示)

双折线图在一张图里面显示,肯定有一个相同的维度,然后有两个不同的数据集。比如一天的温度有最高的和最低的温度,我们就可以用这个来作为展示了。

import pyecharts.options as opts
from pyecharts.charts import Line
week_name_list = ["周一", "周二", "周三", "周四", "周五", "周六", "周日"]
high_temperature = [11, 11, 15, 13, 12, 13, 10]
low_temperature = [1, -2, 2, 5, 3, 2, 0]
(
Line(init_opts=opts.InitOpts(width="1000px", height="600px"))
.add_xaxis(xaxis_data=week_name_list)
.add_yaxis(
series_name="最高气温",
y_axis=high_temperature,
# 显示最大值和最小值
# markpoint_opts=opts.MarkPointOpts(
# data=[
# opts.MarkPointItem(type_="max", name="最大值"),
# opts.MarkPointItem(type_="min", name="最小值"),
# ]
# ),
# 显示平均值
# markline_opts=opts.MarkLineOpts(
# data=[opts.MarkLineItem(type_="average", name="平均值")]
# ),
)
.add_yaxis(
series_name="最低气温",
y_axis=low_temperature,
# 设置刻度标签
# markpoint_opts=opts.MarkPointOpts(
# data=[opts.MarkPointItem(value=-2, name="周最低", x=1, y=-1.5)]
# ),
# markline_opts=opts.MarkLineOpts(
# data=[
# opts.MarkLineItem(type_="average", name="平均值"),
# opts.MarkLineItem(symbol="none", x="90%", y="max"),
# opts.MarkLineItem(symbol="circle", type_="max", name="最高点"),
# ]
# ),
)
.set_global_opts(
title_opts=opts.TitleOpts(title="未来一周气温变化", subtitle="副标题"),
# tooltip_opts=opts.TooltipOpts(trigger="axis"),
# toolbox_opts=opts.ToolboxOpts(is_show=True),
xaxis_opts=opts.AxisOpts(type_="category", boundary_gap=False),
)
.render("最低最高温度折线图.html")
)
print("图表已生成!请查收!")

面积折线图(紧贴Y轴)

还记得二重积分吗,面积代表什么?有时候我们就想要看谁围出来的面积大,这个在物理的实际运用中比较常见,下面来看看效果吧。

import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker
from pyecharts.globals import ThemeType
c = (
Line({"theme": ThemeType.MACARONS})
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values(), is_smooth=True)
.add_yaxis("商家B", Faker.values(), is_smooth=True)
.set_series_opts(
areastyle_opts=opts.AreaStyleOpts(opacity=0.5),
label_opts=opts.LabelOpts(is_show=False),
)
.set_global_opts(
title_opts=opts.TitleOpts(title="标题"),
xaxis_opts=opts.AxisOpts(
axistick_opts=opts.AxisTickOpts(is_align_with_label=True),
is_scale=False,
boundary_gap=False,
name='类别',
name_location='middle',
name_gap=30, # 标签与轴线之间的距离,默认为20,最好不要设置20
name_textstyle_opts=opts.TextStyleOpts(
font_family='Times New Roman',
font_size=16 # 标签字体大小
)),

yaxis_opts=opts.AxisOpts(
name='数量',
name_location='middle',
name_gap=30,
name_textstyle_opts=opts.TextStyleOpts(
font_family='Times New Roman',
font_size=16
# font_weight='bolder',
)),
# toolbox_opts=opts.ToolboxOpts() # 工具选项
)
.render("面积折线图-紧贴Y轴.html")
)
print("请查收!")

简单折线图(无动态和数据标签)

此模板和Excel里面的可视化差不多,没有一点功能元素,虽然它是最简洁的,但是我们可以通过这个进行改动,在上面创作的画作。

import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.globals import ThemeType
x_data = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
y_data = [820, 932, 901, 934, 1290, 1330, 1320]
(
Line({"theme": ThemeType.MACARONS})
.set_global_opts(
tooltip_opts=opts.TooltipOpts(is_show=False),
xaxis_opts=opts.AxisOpts(
name='类别',
name_location='middle',
name_gap=30, # 标签与轴线之间的距离,默认为20,最好不要设置20
name_textstyle_opts=opts.TextStyleOpts(
font_family='Times New Roman',
font_size=16 # 标签字体大小
)),
yaxis_opts=opts.AxisOpts(
type_="value",
axistick_opts=opts.AxisTickOpts(is_show=True),
splitline_opts=opts.SplitLineOpts(is_show=True),
name='数量',
name_location='middle',
name_gap=30,
name_textstyle_opts=opts.TextStyleOpts(
font_family='Times New Roman',
font_size=16
# font_weight='bolder',
)),
)
.add_xaxis(xaxis_data=x_data)
.add_yaxis(
series_name="",
y_axis=y_data,
symbol="emptyCircle",
is_symbol_show=True,
label_opts=opts.LabelOpts(is_show=False),
)
.render("简单折线图.html")
)

连接空白数据折线图

有时候我们在处理数据的时候,发现有些类别的数据缺失了,这个时候我们想要它可以自动连接起来,那么这个模板就可以用到了。

import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker
from pyecharts.globals import ThemeType
y = Faker.values()
y[3], y[5] = None, None
c = (
Line({"theme": ThemeType.WONDERLAND})
.add_xaxis(Faker.choose())
.add_yaxis("商家A", y, is_connect_nones=True)
.set_global_opts(title_opts=opts.TitleOpts(title="标题"),
xaxis_opts=opts.AxisOpts(
name='类别',
name_location='middle',
name_gap=30, # 标签与轴线之间的距离,默认为20,最好不要设置20
name_textstyle_opts=opts.TextStyleOpts(
font_family='Times New Roman',
font_size=16 # 标签字体大小
)),
yaxis_opts=opts.AxisOpts(
name='数量',
name_location='middle',
name_gap=30,
name_textstyle_opts=opts.TextStyleOpts(
font_family='Times New Roman',
font_size=16
# font_weight='bolder',
)), )
# toolbox_opts=opts.ToolboxOpts() # 工具选项)
.render("数据缺失折线图.html")
)

对数轴折线图示例

此图例未必用的上,当然也可以作为一个模板分享于此。

import pyecharts.options as opts
from pyecharts.charts import Line
x_data = ["一", "二", "三", "四", "五", "六", "七", "八", "九"]
y_data_3 = [1, 3, 9, 27, 81, 247, 741, 2223, 6669]
y_data_2 = [1, 2, 4, 8, 16, 32, 64, 128, 256]
y_data_05 = [1 / 2, 1 / 4, 1 / 8, 1 / 16, 1 / 32, 1 / 64, 1 / 128, 1 / 256, 1 / 512]
(
Line(init_opts=opts.InitOpts(width="1200px", height="600px"))
.add_xaxis(xaxis_data=x_data)
.add_yaxis(
series_name="1/2的指数",
y_axis=y_data_05,
linestyle_opts=opts.LineStyleOpts(width=2),
)
.add_yaxis(
series_name="2的指数", y_axis=y_data_2, linestyle_opts=opts.LineStyleOpts(width=2)
)
.add_yaxis(
series_name="3的指数", y_axis=y_data_3, linestyle_opts=opts.LineStyleOpts(width=2)
)
.set_global_opts(
title_opts=opts.TitleOpts(title="对数轴示例", pos_left="center"),
tooltip_opts=opts.TooltipOpts(trigger="item", formatter="{a} <br/>{b} : {c}"),
legend_opts=opts.LegendOpts(pos_left="left"),
xaxis_opts=opts.AxisOpts(type_="category", name="x"),
yaxis_opts=opts.AxisOpts(
type_="log",
name="y",
splitline_opts=opts.SplitLineOpts(is_show=True),
is_scale=True,
),
)
.render("对数轴折线图.html")
)

折线图堆叠(适合多个折线图展示)

多个折线图展示要注意的是,数据量不能过于的接近,不然密密麻麻的折线,反而让人看起来不舒服。

import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.globals import ThemeType
x_data = ["周一", "周二", "周三", "周四", "周五", "周六", "周日"]
y_data = [820, 932, 901, 934, 1290, 1330, 1320]

(
Line({"theme": ThemeType.MACARONS})
.add_xaxis(xaxis_data=x_data)
.add_yaxis(
series_name="邮件营销",
stack="总量",
y_axis=[120, 132, 101, 134, 90, 230, 210],
label_opts=opts.LabelOpts(is_show=False),
)
.add_yaxis(
series_name="联盟广告",
stack="总量",
y_axis=[220, 182, 191, 234, 290, 330, 310],
label_opts=opts.LabelOpts(is_show=False),
)
.add_yaxis(
series_name="视频广告",
stack="总量",
y_axis=[150, 232, 201, 154, 190, 330, 410],
label_opts=opts.LabelOpts(is_show=False),
)
.add_yaxis(
series_name="直接访问",
stack="总量",
y_axis=[320, 332, 301, 334, 390, 330, 320],
label_opts=opts.LabelOpts(is_show=False),
)
.add_yaxis(
series_name="搜索引擎",
stack="总量",
y_axis=[820, 932, 901, 934, 1290, 1330, 1320],
label_opts=opts.LabelOpts(is_show=False),
)
.set_global_opts(
title_opts=opts.TitleOpts(title="折线图堆叠"),
tooltip_opts=opts.TooltipOpts(trigger="axis"),
yaxis_opts=opts.AxisOpts(
type_="value",
axistick_opts=opts.AxisTickOpts(is_show=True),
splitline_opts=opts.SplitLineOpts(is_show=True),
name='数量',
name_location='middle',
name_gap=40,
name_textstyle_opts=opts.TextStyleOpts(
font_family='Times New Roman',
font_size=16
# font_weight='bolder',
)),
xaxis_opts=opts.AxisOpts(type_="category", boundary_gap=False,
name='类别',
name_location='middle',
name_gap=30, # 标签与轴线之间的距离,默认为20,最好不要设置20
name_textstyle_opts=opts.TextStyleOpts(
font_family='Times New Roman',
font_size=16 # 标签字体大小
)),
)
.render("折线图堆叠.html")
)

二维曲线折线图(两个数据)

有时候需要在一个图里面进行对比,那么我们应该如何呈现一个丝滑般的曲线折线图呢?看看这个

import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker
c = (
Line()
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values(), is_smooth=True) # 如果不想变成曲线就删除即可
.add_yaxis("商家B", Faker.values(), is_smooth=True)
.set_global_opts(title_opts=opts.TitleOpts(title="标题"),
xaxis_opts=opts.AxisOpts(
name='类别',
name_location='middle',
name_gap=30, # 标签与轴线之间的距离,默认为20,最好不要设置20
name_textstyle_opts=opts.TextStyleOpts(
font_family='Times New Roman',
font_size=16 # 标签字体大小
)),
yaxis_opts=opts.AxisOpts(
name='数量',
name_location='middle',
name_gap=30,
name_textstyle_opts=opts.TextStyleOpts(
font_family='Times New Roman',
font_size=16
# font_weight='bolder',
)),
# toolbox_opts=opts.ToolboxOpts() # 工具选项
)

.render("二维折线图.html")
)

多维度折线图(颜色对比)

次模板的最大的好处就是可以移动鼠标智能显示数据

import pyecharts.options as opts
from pyecharts.charts import Line
# 将在 v1.1.0 中更改
from pyecharts.commons.utils import JsCode
js_formatter = """function (params) {
console.log(params);
return '降水量 ' + params.value + (params.seriesData.length ? ':' + params.seriesData[0].data : '');
}"""
(
Line(init_opts=opts.InitOpts(width="1200px", height="600px"))
.add_xaxis(
xaxis_data=[
"2016-1",
"2016-2",
"2016-3",
"2016-4",
"2016-5",
"2016-6",
"2016-7",
"2016-8",
"2016-9",
"2016-10",
"2016-11",
"2016-12",
]
)
.extend_axis(
xaxis_data=[
"2015-1",
"2015-2",
"2015-3",
"2015-4",
"2015-5",
"2015-6",
"2015-7",
"2015-8",
"2015-9",
"2015-10",
"2015-11",
"2015-12",
],
xaxis=opts.AxisOpts(
type_="category",
axistick_opts=opts.AxisTickOpts(is_align_with_label=True),
axisline_opts=opts.AxisLineOpts(
is_on_zero=False, linestyle_opts=opts.LineStyleOpts(color="#6e9ef1")
),
axispointer_opts=opts.AxisPointerOpts(
is_show=True, label=opts.LabelOpts(formatter=JsCode(js_formatter))
),
),
)
.add_yaxis(
series_name="2015 降水量",
is_smooth=True,
symbol="emptyCircle",
is_symbol_show=False,
# xaxis_index=1,
color="#d14a61",
y_axis=[2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3],
label_opts=opts.LabelOpts(is_show=False),
linestyle_opts=opts.LineStyleOpts(width=2),
)
.add_yaxis(
series_name="2016 降水量",
is_smooth=True,
symbol="emptyCircle",
is_symbol_show=False,
color="#6e9ef1",
y_axis=[3.9, 5.9, 11.1, 18.7, 48.3, 69.2, 231.6, 46.6, 55.4, 18.4, 10.3, 0.7],
label_opts=opts.LabelOpts(is_show=False),
linestyle_opts=opts.LineStyleOpts(width=2),
)
.set_global_opts(
legend_opts=opts.LegendOpts(),
tooltip_opts=opts.TooltipOpts(trigger="none", axis_pointer_type="cross"),
xaxis_opts=opts.AxisOpts(
type_="category",
axistick_opts=opts.AxisTickOpts(is_align_with_label=True),
axisline_opts=opts.AxisLineOpts(
is_on_zero=False, linestyle_opts=opts.LineStyleOpts(color="#d14a61")
),
axispointer_opts=opts.AxisPointerOpts(
is_show=True, label=opts.LabelOpts(formatter=JsCode(js_formatter))
),
),
yaxis_opts=opts.AxisOpts(
type_="value",
splitline_opts=opts.SplitLineOpts(
is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1)
),
),
)
.render("多维颜色多维折线图.html")
)

阶梯折线图

import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker
from pyecharts.globals import ThemeType
c = (
Line({"theme": ThemeType.MACARONS})
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values(), is_step=True)
.set_global_opts(title_opts=opts.TitleOpts(title="标题"),
xaxis_opts=opts.AxisOpts(
name='类别',
name_location='middle',
name_gap=30, # 标签与轴线之间的距离,默认为20,最好不要设置20
name_textstyle_opts=opts.TextStyleOpts(
font_family='Times New Roman',
font_size=16 # 标签字体大小
)),
yaxis_opts=opts.AxisOpts(
name='数量',
name_location='middle',
name_gap=30,
name_textstyle_opts=opts.TextStyleOpts(
font_family='Times New Roman',
font_size=16
# font_weight='bolder',
)),
# toolbox_opts=opts.ToolboxOpts() # 工具选项
)
.render("阶梯折线图.html")
)

js高渲染折线图

里面的渲染效果相当好看,可以适用于炫酷的展示,数据集可以展示也可以不展示,在相应的位置更改参数即可。

import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.commons.utils import JsCode
x_data = ["14", "15", "16", "17", "18", "19", "20", "21", "22", "23","24","25","26","27","28","29","30","31","32","33","34","35","36","37","38","39","40"]
y_data = [393, 438, 485, 631, 689, 824, 987, 1000, 1100, 1200,1500,1000,1700,1900,2000,500,1200,1300,1500,1800,1500,1900,1700,1000,1900,1800,2100,1600,2200,2300]
background_color_js = (
"new echarts.graphic.LinearGradient(0, 0, 0, 1, "
"[{offset: 0, color: '#c86589'}, {offset: 1, color: '#06a7ff'}], false)"
)
area_color_js = (
"new echarts.graphic.LinearGradient(0, 0, 0, 1, "
"[{offset: 0, color: '#eb64fb'}, {offset: 1, color: '#3fbbff0d'}], false)"
)
c = (
Line(init_opts=opts.InitOpts(bg_color=JsCode(background_color_js)))
.add_xaxis(xaxis_data=x_data)
.add_yaxis(
series_name="注册总量",
y_axis=y_data,
is_smooth=True,
is_symbol_show=True,
symbol="circle",
symbol_size=6,
linestyle_opts=opts.LineStyleOpts(color="#fff"),
label_opts=opts.LabelOpts(is_show=True, position="top", color="white"),
itemstyle_opts=opts.ItemStyleOpts(
color="red", border_color="#fff", border_width=3
),
tooltip_opts=opts.TooltipOpts(is_show=False),
areastyle_opts=opts.AreaStyleOpts(color=JsCode(area_color_js), opacity=1),
)
.set_global_opts(
title_opts=opts.TitleOpts(
title="OCTOBER 2015",
pos_bottom="5%",
pos_left="center",
title_textstyle_opts=opts.TextStyleOpts(color="#fff", font_size=16),
),
xaxis_opts=opts.AxisOpts(
type_="category",
boundary_gap=False,
axislabel_opts=opts.LabelOpts(margin=30, color="#ffffff63"),
axisline_opts=opts.AxisLineOpts(is_show=False),
axistick_opts=opts.AxisTickOpts(
is_show=True,
length=25,
linestyle_opts=opts.LineStyleOpts(color="#ffffff1f"),
),
splitline_opts=opts.SplitLineOpts(
is_show=True, linestyle_opts=opts.LineStyleOpts(color="#ffffff1f")
),
),
yaxis_opts=opts.AxisOpts(
type_="value",
position="right",
axislabel_opts=opts.LabelOpts(margin=20, color="#ffffff63"),
axisline_opts=opts.AxisLineOpts(
linestyle_opts=opts.LineStyleOpts(width=2, color="#fff")
),
axistick_opts=opts.AxisTickOpts(
is_show=True,
length=15,
linestyle_opts=opts.LineStyleOpts(color="#ffffff1f"),
),
splitline_opts=opts.SplitLineOpts(
is_show=True, linestyle_opts=opts.LineStyleOpts(color="#ffffff1f")
),
),
legend_opts=opts.LegendOpts(is_show=False),
)
.render("高渲染.html")
)

所有图表均可配置,无论是字体的大小,还是颜色,还是背景都可以自己配置哟!下期文章我们继续探索折线图的魅力哟!

到此这篇关于Python可视化神器pyecharts绘制折线图详情的文章就介绍到这了,更多相关python绘制折线图内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 教你利用python的matplotlib(pyplot)绘制折线图和柱状图

    目录 前言 一.折线图 二.柱状图 总结 前言 今天帮师兄赶在deadline之前画论文的图,现学现卖很是刺激,现把使用matplotlib的子库pyplot画折线图和柱状图的代码记录分享一下,方便大家参考,个人感觉pyplot真的蛮方便的,非常值得使用. 先看下官方对pyplot的描述:“Provides a MATLAB-like plotting framework.”.对,就是一个类似matlab的画图框架.就不多多说了,直接上代码吧: 一.折线图 代码: import matplotl

  • Python绘制折线图可视化神器pyecharts案例

    目录 前言 折线图模板系列 自定义标签数据折线图 一天用电量折线图(特定场景) 断点折线图(根据场景进行配置) 双折线图显示最低最高数据标签(不显示其他数据标签) 双折线图显示平均刻度数据标签(数据可显示) 断点折线图(显示数据项) 面积折线图(不紧贴) 3D旋转弹簧图 前言 相信有很多的小伙伴看了如此多个案例之后肯定有所发现,每一个案例都对应着每一个配置,如果是官方配置文档,说实话看起来真的很难,这样通过案例实现来解决各种参数的配置,我觉得有一定的参考价值和学习意义,正所谓“磨刀不误砍工”,如

  • python使用matplotlib绘制折线图

    前言: 我的python学习也告一段落了.不过有些,方法还是打算总结一下和大家分享.我整理了使用matplotlib绘制折线图的一般步骤,按照这个步骤走绘制折线图一般都没啥问题.其实用matplotlib库绘制折线图的过程,其实就是类似于数学上描点,连线绘制图形的过程.所有,这个过程就可以简单的规划为获取图像点信息,描点连线,设置图线格式这三个部分. matplotlib库的安装以及程序引用的说明: 我使用的编程软件为pycharm,我就说一下pycharm安装matplotlib库的方法吧.在

  • Python数据分析之使用matplotlib绘制折线图、柱状图和柱线混合图

    目录 matplotlib介绍 matplotlib绘制折线图 matplotlib绘制柱状图 matplotlib绘制柱线混合图 总结 matplotlib介绍 Matplotlib 是 Python 的绘图库. 它可与 NumPy 一起使用,提供了一种有效的 MatLab 开源替代方案. 它也可以和图形工具包一起使用,如 PyQt 和 wxPython. 安装Matplotlib库命令:在cmd命令窗口输入pip install matplotlib. matplotlib绘制折线图 1.绘

  • Python数据分析之 Matplotlib 折线图绘制

    目录 一.Matplotlib 绘图 简单示例 二.折线图绘制 一.Matplotlib 绘图 在数据分析中,数据可视化也非常重要,通过直观的展示过程.结果数据,可以帮助我们清晰的理解数据,进而更好的进行分析.接下来就说一下Python数据分析中的数据可视化工具 Matplotlib 库. Matplotlib 是一个非常强大的Python 2D绘图库,使用它,我们可以通过图表的形式更直观的展现数据,实现数据可视化,使用起来也非常方便,而且支持绘制折线图.柱状图.饼图.直方图.散点图等. 可以使

  • Python pyecharts绘制折线图详解

    一.绘制折线图 import seaborn as sns import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['font.sans-serif']=['Microsoft YaHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus']=False

  • Python可视化神器pyecharts绘制折线图详情

    目录 折线图介绍 折线图模板系列 双折线图(气温最高最低温度趋势显示) 面积折线图(紧贴Y轴) 简单折线图(无动态和数据标签) 连接空白数据折线图 对数轴折线图示例 折线图堆叠(适合多个折线图展示) 二维曲线折线图(两个数据) 多维度折线图(颜色对比) 阶梯折线图 js高渲染折线图 折线图介绍 折线图和柱状图一样是我们日常可视化最多的一个图例,当然它的优势和适用场景相信大家肯定不陌生,要想快速的得出趋势,抓住趋势二字,就会很快的想到要用折线图来表示了.折线图是通过直线将这些点按照某种顺序连接起来

  • Python可视化神器pyecharts绘制雷达图

    目录 雷达图 雷达图模板系列 基础雷达图 单例雷达图 空气质量模板 颜色雷达图 雷达图 雷达图是以从同一点开始的轴上表示的三个或更多个定量变量的二维图表的形式显示多变量数据的图形方法.轴的相对位置和角度通常是无信息的. 雷达图也称为网络图,蜘蛛图,星图,蜘蛛网图,不规则多边形,极坐标图或Kiviat图.它相当于​ ​平行坐标图​​,轴径向排列. 平行坐标图: 平行坐标图是一种通常的可视化方法, 用于对 高维几何 和 多元数据 的可视化. 为了表示在高维空间的一个点集,在N条平行的线的背景下,(一

  • Python可视化神器pyecharts绘制漏斗图

    目录 漏斗图 漏斗图系列模板 尖顶型漏斗图 锥子型漏斗 三角形漏斗 连接型漏斗 漏斗图 漏斗图是由Light等在1984年提出,一般以单个研究的效应量为横坐标,样本含量为纵坐标做的散点图.效应量可以为RR.OR和死亡比或者其对数值等.理论上讲,被纳入Meta分析的各独立研究效应的点估计,在平面坐标系中的集合应为一个倒置的漏斗形,因此称为漏斗图. 样本量小,研究精度低,分布在漏斗图的底部,向周围分散: 样本量大,研究精度高,分布在漏斗图的顶部,向中间集中. 漏斗图法的优点是: 简单易行,只需要被纳

  • Python可视化神器pyecharts绘制水球图

    目录 水球图 双水球图显示 正方形水球图 圆球水球图 数据精度水球图 炫酷水球超级好看 水球图 水球图首先是动态的效果,像水流一样波动,所以看起来比较的舒服,一般用于业务里面的完成率,其实和之前的仪表盘有点类似,但是我个人绝对水球图更加的好,因为看起来比较的炫酷. from pyecharts import options as opts from pyecharts.charts import Liquid from pyecharts.globals import SymbolType c

  • Python可视化神器pyecharts绘制桑基图

    目录 桑基图 桑基图系列模板 第一个桑基图 复杂桑基图 桑基图 桑基图(Sankey diagram),即桑基能量分流图,也叫桑基能量平衡图.它是一种特定类型的流程图,图中延伸的分支的宽度对应数据流量的大小,通常应用于​​能源​​​.材料成分.​​金融​​​等数据的可视化分析.因1898年Matthew Henry Phineas Riall Sankey绘制的“​​蒸汽机​​的能源效率图”而闻名,此后便以其名字命名为“桑基图”. 桑基图最明显的特征就是,始末端的分支宽度总和相等,即所有主支宽度

  • Python可视化神器pyecharts绘制柱状图

    目录 主题介绍 图表参数 主题详解 柱状图模板系列 海量数据柱状图动画展示 收入支出柱状图(适用于记账) 三维数据叠加 柱状图与折线图多维展示(同屏展示) 单列多维数据展示 3D柱状图 主题介绍 pyecharts里面有很多的主题可以供我们选择,我们可以根据自己的需要完成主题的配置,这样就告别了软件的限制,可以随意的发挥自己的艺术细胞了. 图表参数 ''' def add_yaxis( # 系列名称,用于 tooltip 的显示,legend 的图例筛选. series_name: str, #

  • Python可视化神器pyecharts绘制地理图表

    目录 地理图表 地理图表之热力图系列模板 人口流动趋势图(中国) 中国城市分段热力图 重庆省份微塑料分布热力图 中国城市连续热力图 中国城市热力动态图 中国城市散点热力图 地理图表 什么是地理图表?地理图表有什么作用?地理图表主要应用在那些领域? 其实这些问题看看下面的实例图形就已不攻自破了,地理图表一看首先就是地图,然后在地理图表里面展示数据,比如说热力图,趋势流动图,人口密集分布图,反正地理坐标相关的就可以运用在这个里面,其次图形支持全球地图,全球国家,中国,中国的所有的省份的地图,反正应有

  • Python可视化神器pyecharts绘制仪表盘

    目录 仪表盘 仪表盘模板系列 假期剩余额度 任务完成率 多色仪表盘 仪表盘内部字体添加 仪表盘 仪表盘的效果我只能说炫酷而已,如果想要运用在实际的场景中,我其实也不清楚那个场景比较适合,但是pyecharts毕竟是炫酷可视化的利器,炫酷自然也就有它了. 小汽车仪表盘是长这样的,下面我们来看看pyecharts的仪表盘是怎么样子的. 仪表盘模板系列 假期剩余额度 import pyecharts.options as opts from pyecharts.charts import Gauge

  • Python可视化神器pyecharts之绘制箱形图

    目录 箱形图 概念 用处 箱形图系列模板 第一个箱形图 复杂一点的图例 箱形图 概念 后面的图形都是一些专业的统计图形,当然也会是我们可视化的对象. 箱形图(Box-plot)又称为盒须图.盒式图或箱线图,是一种用作显示一组数据分散情况资料的统计图.因形状如箱子而得名.在各种领域也经常被使用,常见于​​品质管理​​.它主要用于反映原始数据分布的特征,还可以进行多组数据分布特征的比 较.箱线图的绘制方法是:先找出一组数据的上边缘.下边缘.中位数和两个四分位数:然后, 连接两个四分位数画出箱体:再将

  • Python 数据可视化神器Pyecharts绘制图像练习

    目录 前言: 1.Hive数据库查询sql 2.Python代码实现—柱状图 3.Python代码实现—饼状图 4.Python代码实现—箱型图 5.Python代码实现—折线图 6.Python代码实现—雷达图 7.Python代码实现—散点图 前言: Echarts 是百度开源的一款数据可视化 JS 工具,数据可视化类型十分丰富,但是得通过导入 js 库在 Java Web 项目上运行. 作为工作中常用 Python 的选手,不能不知道这款数据可视化插件的强大.那么,能否在 Python 中

随机推荐