python中数组和列表的简单实例
目录
- list & array
- python列表和Numpy数组的区别
- 总结
#环境win64+anaconda+python3.6
list & array
(1)list不具有array的全部属性(如维度、转置等)
代码1:
#eg1_1 import numpy as np a = np.array([[1,2,0,1],[1,6,9,55],[7,8,9,5]])#a为数组 print(a.T) #Result: [[ 1 1 7] [ 2 6 8] [ 0 9 9] [ 1 55 5]] #eg1_2 a = [[1,2,0,1],[1,6,9,55],[7,8,9,5]] #a为列表 print(a.T) #Result: 'list' object has no attribute 'T'
代码2:
#eg1_3 import numpy as np a=np.array([[1,2,3],[1,1,4],[1,5,1]]) print(a.shape) #Result: (3, 3) #eg1_4 a=[[1,2,3],[1,1,4],[1,5,1]] print(a.shape) #Result 'list' object has no attribute 'shape'
(顺带一提,如何把一个数组转化为列向量:↓)
import numpy as np a=np.array([[1,2,3],[1,1,4],[1,5,1]]) a=a.reshape(-1,1) print(a) #Result: [[1] [2] [3] [1] [1] [4] [1] [5] [1]]
(2)a[:m]的含义,a可以是列表或者数组,但是无论是哪种情况,a[:0]为空
#eg2_1 import numpy as np a=np.array([[4,1,2], [7,4,10], [12,17,88]]) #a=np.array([(4,1,2), # (7,4,10), # (12,17,88)]) 这两个a中[和(不一样,其实它们完全一样 print(a[:0]) print(a[:1]) print(a[:2]) #Result: [] [[4 1 2]] [[ 4 1 2] [ 7 4 10]] #eg2_1 a=[(4,1,2),(7,4,10),(12,17,88)] print(a[:0]) print(a[:1]) print(a[:2]) #Result: [] [(4, 1, 2)] [(4, 1, 2), (7, 4, 10)]
(3)array和list关于“==”的计算
#eg3_1 import numpy as np a=np.array(['dog','cat','car']) b=np.array(['dog','cat','trunk']) acc = (np.mean(a == b)) print(acc) #Result 0.6666666666666666 #eg3_2 import numpy as np a=['dog','cat','car'] b=['dog','cat','trunk'] acc = (np.mean(a == b)) print(acc) #Result 0.0
(4)array和list关于“*”的计算
from numpy import * #a为数组 a=array([[1,2,3], [4,5,6]]) b=4*a print(b) [[ 4 8 12] [16 20 24]] from numpy import * #a为列表 a=([[1,2,3], [4,5,6]]) b=4*a print(b) [[1, 2, 3], [4, 5, 6], [1, 2, 3], [4, 5, 6], [1, 2, 3], [4, 5, 6], [1, 2, 3], [4, 5, 6]]
python列表和Numpy数组的区别
1、二者都可以用于处理多维数组。
Numpy中的ndarray对象用于处理多维数组,它作为一个快速而灵活的大数据容器。Python列表可以存储一维数组,通过列表的嵌套可以实现多维数组。
2、存储效率和输入输出性能不同。
Numpy专门针对数组的操作和运算进行了设计,存储效率和输入输出性能远优于Python中的嵌套列表,数组越大,Numpy的优势就越明显。
3、元素数据类型。
通常,Numpy数组中的所有元素的类型都必须相同的,而Python列表中的元素类型是任意的,所以在通用性能方面Numpy数组不及Python列表,但在科学计算中,可以省掉很多循环语句,代码使用方面比Python列表简单的多。
总结
到此这篇关于python中数组和列表的文章就介绍到这了,更多相关python数组和列表内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
赞 (0)