Python实现DBSCAN聚类算法并样例测试

什么是聚类算法?聚类是一种机器学习技术,它涉及到数据点的分组。给定一组数据点,我们可以使用聚类算法将每个数据点划分为一个特定的组。理论上,同一组中的数据点应该具有相似的属性和/或特征,而不同组中的数据点应该具有高度不同的属性和/或特征。聚类是一种无监督学习的方法,是许多领域中常用的统计数据分析技术。

常用的算法包括K-MEANS、高斯混合模型(Gaussian Mixed Model,GMM)、自组织映射神经网络(Self-Organizing Map,SOM)

重点给大家介绍Python实现DBSCAN聚类算法并通过简单样例测试。

发现高密度的核心样品并从中膨胀团簇。

Python代码如下:

# -*- coding: utf-8 -*-
"""
Demo of DBSCAN clustering algorithm
Finds core samples of high density and expands clusters from them.
"""
print(__doc__)
# 引入相关包
import numpy as np
from sklearn.cluster import DBSCAN
from sklearn import metrics
from sklearn.datasets.samples_generator import make_blobs
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
# 初始化样本数据
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4,
                            random_state=0)
X = StandardScaler().fit_transform(X)
# 计算DBSCAN
db = DBSCAN(eps=0.3, min_samples=10).fit(X)
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_
# 聚类的结果
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
n_noise_ = list(labels).count(-1)
print('Estimated number of clusters: %d' % n_clusters_)
print('Estimated number of noise points: %d' % n_noise_)
print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))
print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))
print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))
print("Adjusted Rand Index: %0.3f"
      % metrics.adjusted_rand_score(labels_true, labels))
print("Adjusted Mutual Information: %0.3f"
      % metrics.adjusted_mutual_info_score(labels_true, labels,
                                           average_method='arithmetic'))
print("Silhouette Coefficient: %0.3f"
      % metrics.silhouette_score(X, labels))
# 绘出结果
unique_labels = set(labels)
colors = [plt.cm.Spectral(each)
          for each in np.linspace(0, 1, len(unique_labels))]
for k, col in zip(unique_labels, colors):
    if k == -1:
        col = [0, 0, 0, 1]
    class_member_mask = (labels == k)
    xy = X[class_member_mask & core_samples_mask]
    plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
             markeredgecolor='k', markersize=14)
    xy = X[class_member_mask & ~core_samples_mask]
    plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
             markeredgecolor='k', markersize=6)
plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()

测试结果如下:

最终结果绘图:

具体数据:

以上就是Python实现DBSCAN聚类算法(简单样例测试)的详细内容,更多关于Python聚类算法的资料请关注我们其它相关文章!

(0)

相关推荐

  • python实现dbscan算法

    DBSCAN 算法是一种基于密度的空间聚类算法.该算法利用基于密度的聚类的概念,即要求聚类空间中的一定区域内所包含对象(点或其它空间对象)的数目不小于某一给定阀值.DBSCAN 算法的显著优点是聚类速度快且能够有效处理噪声点和发现任意形状的空间聚类.但是由于它直接对整个数据库进行操作且进行聚类时使用了一个全局性的表征密度的参数,因此也具有两个比较明显的弱点: 1. 当数据量增大时,要求较大的内存支持 I/0 消耗也很大; 2. 当空间聚类的密度不均匀.聚类间距离相差很大时,聚类质量较差. DBS

  • Python基于聚类算法实现密度聚类(DBSCAN)计算【测试可用】

    本文实例讲述了Python基于聚类算法实现密度聚类(DBSCAN)计算.分享给大家供大家参考,具体如下: 算法思想 基于密度的聚类算法从样本密度的角度考察样本之间的可连接性,并基于可连接样本不断扩展聚类簇得到最终结果. 几个必要概念: ε-邻域:对于样本集中的xj, 它的ε-邻域为样本集中与它距离小于ε的样本所构成的集合. 核心对象:若xj的ε-邻域中至少包含MinPts个样本,则xj为一个核心对象. 密度直达:若xj位于xi的ε-邻域中,且xi为核心对象,则xj由xi密度直达. 密度可达:若样

  • python中实现k-means聚类算法详解

    算法优缺点: 优点:容易实现 缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢 使用数据类型:数值型数据 算法思想 k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去. 1.首先我们需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的函数关系判断k为多少的时候效果最好.另一种则是根据具体的需求确定,比如说进行衬衫尺寸的聚

  • python实现鸢尾花三种聚类算法(K-means,AGNES,DBScan)

    一.分散性聚类(kmeans) 算法流程: 1.选择聚类的个数k. 2.任意产生k个聚类,然后确定聚类中心,或者直接生成k个中心. 3.对每个点确定其聚类中心点. 4.再计算其聚类新中心. 5.重复以上步骤直到满足收敛要求.(通常就是确定的中心点不再改变. 优点: 1.是解决聚类问题的一种经典算法,简单.快速 2.对处理大数据集,该算法保持可伸缩性和高效率 3.当结果簇是密集的,它的效果较好 缺点 1.在簇的平均值可被定义的情况下才能使用,可能不适用于某些应用 2.必须事先给出k(要生成的簇的数

  • Python聚类算法之DBSACN实例分析

    本文实例讲述了Python聚类算法之DBSACN.分享给大家供大家参考,具体如下: DBSCAN:是一种简单的,基于密度的聚类算法.本次实现中,DBSCAN使用了基于中心的方法.在基于中心的方法中,每个数据点的密度通过对以该点为中心以边长为2*EPs的网格(邻域)内的其他数据点的个数来度量.根据数据点的密度分为三类点: 核心点:该点在邻域内的密度超过给定的阀值MinPs. 边界点:该点不是核心点,但是其邻域内包含至少一个核心点. 噪音点:不是核心点,也不是边界点. 有了以上对数据点的划分,聚合可

  • K-means聚类算法介绍与利用python实现的代码示例

    聚类 今天说K-means聚类算法,但是必须要先理解聚类和分类的区别,很多业务人员在日常分析时候不是很严谨,混为一谈,其实二者有本质的区别. 分类其实是从特定的数据中挖掘模式,作出判断的过程.比如Gmail邮箱里有垃圾邮件分类器,一开始的时候可能什么都不过滤,在日常使用过程中,我人工对于每一封邮件点选"垃圾"或"不是垃圾",过一段时间,Gmail就体现出一定的智能,能够自动过滤掉一些垃圾邮件了.这是因为在点选的过程中,其实是给每一条邮件打了一个"标签&qu

  • Python实现DBSCAN聚类算法并样例测试

    什么是聚类算法?聚类是一种机器学习技术,它涉及到数据点的分组.给定一组数据点,我们可以使用聚类算法将每个数据点划分为一个特定的组.理论上,同一组中的数据点应该具有相似的属性和/或特征,而不同组中的数据点应该具有高度不同的属性和/或特征.聚类是一种无监督学习的方法,是许多领域中常用的统计数据分析技术. 常用的算法包括K-MEANS.高斯混合模型(Gaussian Mixed Model,GMM).自组织映射神经网络(Self-Organizing Map,SOM) 重点给大家介绍Python实现D

  • 用C++实现DBSCAN聚类算法

    这几天由于工作需要,对DBSCAN聚类算法进行了C++的实现.时间复杂度O(n^2),主要花在算每个点领域内的点上.算法很简单,现共享大家参考,也希望有更多交流. 数据点类型描述如下: 复制代码 代码如下: #include <vector> using namespace std; const int DIME_NUM=2;        //数据维度为2,全局常量 //数据点类型 class DataPoint { private:     unsigned long dpID;     

  • python实现k-means聚类算法

    k-means聚类算法 k-means是发现给定数据集的k个簇的算法,也就是将数据集聚合为k类的算法. 算法过程如下: 1)从N个文档随机选取K个文档作为质心 2)对剩余的每个文档测量其到每个质心的距离,并把它归到最近的质心的类,我们一般取欧几里得距离 3)重新计算已经得到的各个类的质心 4)迭代步骤(2).(3)直至新的质心与原质心相等或迭代次数大于指定阈值,算法结束 算法实现 随机初始化k个质心,用dict保存质心的值以及被聚类到该簇中的所有data. def initCent(dataSe

  • python实现mean-shift聚类算法

    本文实例为大家分享了python实现mean-shift聚类算法的具体代码,供大家参考,具体内容如下 1.新建MeanShift.py文件 import numpy as np # 定义 预先设定 的阈值 STOP_THRESHOLD = 1e-4 CLUSTER_THRESHOLD = 1e-1 # 定义度量函数 def distance(a, b): return np.linalg.norm(np.array(a) - np.array(b)) # 定义高斯核函数 def gaussian

  • Python用K-means聚类算法进行客户分群的实现

    一.背景 1.项目描述 你拥有一个超市(Supermarket Mall).通过会员卡,你用有一些关于你的客户的基本数据,如客户ID,年龄,性别,年收入和消费分数. 消费分数是根据客户行为和购买数据等定义的参数分配给客户的. 问题陈述:你拥有这个商场.想要了解怎么样的顾客可以很容易地聚集在一起(目标顾客),以便可以给营销团队以灵感并相应地计划策略. 2.数据描述 字段名 描述 CustomerID 客户编号 Gender 性别 Age 年龄 Annual Income (k$) 年收入,单位为千

  • Python实现K-means聚类算法并可视化生成动图步骤详解

    K-means算法介绍 简单来说,K-means算法是一种无监督算法,不需要事先对数据集打上标签,即ground-truth,也可以对数据集进行分类,并且可以指定类别数目 牧师-村民模型 K-means 有一个著名的解释:牧师-村民模型: 有四个牧师去郊区布道,一开始牧师们随意选了几个布道点,并且把这几个布道点的情况公告给了郊区所有的村民,于是每个村民到离自己家最近的布道点去听课. 听课之后,大家觉得距离太远了,于是每个牧师统计了一下自己的课上所有的村民的地址,搬到了所有地址的中心地带,并且在海

  • Python实现Kmeans聚类算法

    本节内容:本节内容是根据上学期所上的模式识别课程的作业整理而来,第一道题目是Kmeans聚类算法,数据集是Iris(鸢尾花的数据集),分类数k是3,数据维数是4. 关于聚类 聚类算法是这样的一种算法:给定样本数据Sample,要求将样本Sample中相似的数据聚到一类.有了这个认识之后,就应该了解了聚类算法要干什么了吧.说白了,就是归类.     首先,我们需要考虑的是,如何衡量数据之间的相似程度?比如说,有一群说不同语言的人,我们一般是根据他们的方言来聚类的(当然,你也可以指定以身高来聚类).

  • python基于K-means聚类算法的图像分割

    1 K-means算法 实际上,无论是从算法思想,还是具体实现上,K-means算法是一种很简单的算法.它属于无监督分类,通过按照一定的方式度量样本之间的相似度,通过迭代更新聚类中心,当聚类中心不再移动或移动差值小于阈值时,则就样本分为不同的类别. 1.1 算法思路 随机选取聚类中心 根据当前聚类中心,利用选定的度量方式,分类所有样本点 计算当前每一类的样本点的均值,作为下一次迭代的聚类中心 计算下一次迭代的聚类中心与当前聚类中心的差距 如4中的差距小于给定迭代阈值时,迭代结束.反之,至2继续下

  • python实现聚类算法原理

    本文主要内容: 聚类算法的特点 聚类算法样本间的属性(包括,有序属性.无序属性)度量标准 聚类的常见算法,原型聚类(主要论述K均值聚类),层次聚类.密度聚类 K均值聚类算法的python实现,以及聚类算法与EM最大算法的关系 参考引用 先上一张gif的k均值聚类算法动态图片,让大家对算法有个感性认识: 其中:N=200代表有200个样本,不同的颜色代表不同的簇(其中 3种颜色为3个簇),星星代表每个簇的簇心.算法通过25次迭代找到收敛的簇心,以及对应的簇. 每次迭代的过程中,簇心和对应的簇都在变

  • 利用Python如何实现K-means聚类算法

    目录 前言 算法原理 目标函数 算法流程 Python实现 总结 前言 K-Means 是一种非常简单的聚类算法(聚类算法都属于无监督学习).给定固定数量的聚类和输入数据集,该算法试图将数据划分为聚类,使得聚类内部具有较高的相似性,聚类与聚类之间具有较低的相似性. 算法原理 1. 初始化聚类中心,或者在输入数据范围内随机选择,或者使用一些现有的训练样本(推荐) 2. 直到收敛 将每个数据点分配到最近的聚类.点与聚类中心之间的距离是通过欧几里德距离测量得到的. 通过将聚类中心的当前估计值设置为属于

随机推荐