OpenCV-Python实现凸包的获取

前言

逼近多边形是某个图像轮廓的高度近似,而凸包的提出是为了简化逼近多边形的。其实,凸包跟逼近多边形很像,只不过它是物体最外层的“凸”多边形。

简单的概括,凸包是指完全包含原有轮廓,并且仅由轮廓上的点所构成的多边形。凸包的特点是每一处都是凸的,即在凸包内连接任意两点的直线都在凸包的内部,并且任意连续3个点的内角小于180度。

在OpenCV中,它给我们提供cv2.convexHull()来获取轮廓的凸包。其完整定义如下:

def convexHull(points, hull=None, clockwise=None, returnPoints=None): 

points:轮廓

hull:返回值,为凸包角点。可以理解为多边形的点坐标,或索引。

clockwise:布尔类型,为True时,凸包角点将按顺时针方向排列;为False时,为逆时针。

returnPoints:布尔类型,默认值True,函数返回凸包角点的x/y坐标;为False时,函数返回轮廓中凸包角点的索引。

获取凸包角点

既然,我们已经了解了凸包的作用,并且理解了OpenCV提供的函数。下面,我们随便选取一张图,获取凸包角点。具体代码如下所示:

import cv2

img = cv2.imread("24.jpg")

cv2.imshow("img", img)
# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

hull=cv2.convexHull(contours[0])

print(hull)

这里,我们随便获取了一张图像,并获取其凸包的角点。运行之后,角点坐标如下:

如果修改参数returnPoints为False,会返回对应的6个索引值。

这里我们再添加一行代码就可以绘制凸包多边形了,具体添加的代码如下:

#获取hull之后
cv2.polylines(img, [hull], True, (0, 255, 0), 2)
cv2.imshow("img1", img)

运行之后,效果如下所示:

凸缺陷

凸包与轮廓之间的部分我们称之为凸缺陷。在OpenCV中使用函数cv2.convexityDefects()获取凸缺陷,其完整定义如下:

def convexityDefects(contour, convexhull, convexityDefects=None):

contour:轮廓

convexhull:凸包

convexityDefects:返回值,为凸缺陷点集。它是一个数组,返回的指包括[起点,终点,轮廓上的距离凸包最远点,最远点到凸包的近似距离]

特别注意,用该函数计算凸缺陷之前,我们需要使用函数cv2.convexHull()获取凸包,但其参数returnPoints必须为False。

下面,我们来使用该函数计算上图的凸缺陷。代码如下:

import cv2

img = cv2.imread("24.jpg")
cv2.imshow("img", img)

# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

hull = cv2.convexHull(contours[0], returnPoints=False)

defects = cv2.convexityDefects(contours[0], hull)
print(defects)

for i in range(defects.shape[0]):
    s, e, f, d = defects[i, 0]
    start = tuple(contours[0][s][0])
    end = tuple(contours[0][e][0])
    far = tuple(contours[0][f][0])
    cv2.line(img, start, end, [0, 255, 0], 2)
    cv2.circle(img, far, 5, [0, 0, 255], -1)

cv2.imshow("img1", img)

cv2.waitKey()
cv2.destroyAllWindows()

运行之后,效果如下:

如上图所示,我们用点标记出来的凸缺陷,可以看到五角星的每个凹肩都是凸缺陷。

最后可以扩展以下,其中OpenCV提供函数cv2.isContourConvex()来判断轮廓是否是凸形的。同时,也提供了cv2.pointPolygonTest()函数来计算点到多边形(轮廓)的最短距离,也就是垂线距离,这个计算由称为点和多边形的关系测试。感兴趣的读者可以自己实验这两个方函数。

简单例子 手势图片

接下来,我们将介绍一张稍微难一点的图片——手势图片(finger.jpg),如下所示:

我们将会来寻找这个手势的凸包。基本的处理思路还是和之前的一致,只是要在二值化以及凸包点集集合的大小上做一些处理,取二值化的阈值为235,凸包点集中的点个数大于5,完整的Python代码如下:

import cv2

# 读取图片并转至灰度模式
imagepath = 'F://finger.jpg'
img = cv2.imread(imagepath, 1)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化,取阈值为235
ret, thresh = cv2.threshold(gray, 235, 255, cv2.THRESH_BINARY)

# 寻找图像中的轮廓
image, contours, hierarchy = cv2.findContours(thresh, 2, 1)

# 寻找物体的凸包并绘制凸包的轮廓
for cnt in contours:
    hull = cv2.convexHull(cnt)
    length = len(hull)
    # 如果凸包点集中的点个数大于5
    if length > 5:
        # 绘制图像凸包的轮廓
        for i in range(length):
            cv2.line(img, tuple(hull[i][0]), tuple(hull[(i+1)%length][0]), (0,0,255), 2)

cv2.imshow('finger', img)
cv2.waitKey()

检测到的凸包如下图所示:

可以发现,一共检测到2个凸包,一个是整个手势外围的凸包,正好包围整个手,另一个是两个手指形成的内部的图形,类似于O的凸包,这符合我们的预期。

到此这篇关于OpenCV-Python实现凸包的获取的文章就介绍到这了,更多相关OpenCV-Python 凸包内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • OpenCV-Python实现凸包的获取

    前言 逼近多边形是某个图像轮廓的高度近似,而凸包的提出是为了简化逼近多边形的.其实,凸包跟逼近多边形很像,只不过它是物体最外层的"凸"多边形. 简单的概括,凸包是指完全包含原有轮廓,并且仅由轮廓上的点所构成的多边形.凸包的特点是每一处都是凸的,即在凸包内连接任意两点的直线都在凸包的内部,并且任意连续3个点的内角小于180度. 在OpenCV中,它给我们提供cv2.convexHull()来获取轮廓的凸包.其完整定义如下: def convexHull(points, hull=None

  • OpenCV+python手势识别框架和实例讲解

    基于OpenCV2.4.8和 python 2.7实现简单的手势识别. 以下为基本步骤 1.去除背景,提取手的轮廓 2. RGB->YUV,同时计算直方图 3.进行形态学滤波,提取感兴趣的区域 4.找到二值化的图像轮廓 5.找到最大的手型轮廓 6.找到手型轮廓的凸包 7.标记手指和手掌 8.把提取的特征点和手势字典中的进行比对,然后判断手势和形状 提取手的轮廓 cv2.findContours() 找到最大凸包cv2.convexHull(),然后找到手掌和手指的相对位置,定位手型的轮廓和关键点

  • Python求凸包及多边形面积教程

    一般有两种算法来计算平面上给定n个点的凸包:Graham扫描法(Graham's scan),时间复杂度为O(nlgn):Jarvis步进法(Jarvis march),时间复杂度为O(nh),其中h为凸包顶点的个数.这两种算法都按逆时针方向输出凸包顶点. Graham扫描法 用一个栈来解决凸包问题,点集Q中每个点都会进栈一次,不符合条件的点会被弹出,算法终止时,栈中的点就是凸包的顶点(逆时针顺序在边界上). 算法步骤如下图: import sys import math import time

  • Opencv Python实现两幅图像匹配

    本文实例为大家分享了Opencv Python实现两幅图像匹配的具体代码,供大家参考,具体内容如下 原图 import cv2 img1 = cv2.imread('SURF_2.jpg', cv2.IMREAD_GRAYSCALE) img1 = cv2.resize(img1,dsize=(600,400)) img2 = cv2.imread('SURF_1.jpg', cv2.IMREAD_GRAYSCALE) img2 = cv2.resize(img2,dsize=(600,400)

  • opencv python模糊影像检测效果

    本文采用拉普拉斯算子计算影像的模糊程度,小于阈值的影像被认为是模糊的,从而被移动到专门存放模糊影像的文件夹.本文只使用cv2和shutil库,若想直接使用该脚本需安装这两个库.完整代码如下图所示. import os import cv2 import shutil import sys # 模糊影像检测函数,阈值默认为0.07 def blurImagesDetection(folder_path, thres=0.07): # 新建一个用于存放模糊影像的文件夹 blurImageDirPat

  • opencv python模糊影像检测效果

    本文采用拉普拉斯算子计算影像的模糊程度,小于阈值的影像被认为是模糊的,从而被移动到专门存放模糊影像的文件夹.本文只使用cv2和shutil库,若想直接使用该脚本需安装这两个库.完整代码如下图所示. import os import cv2 import shutil import sys # 模糊影像检测函数,阈值默认为0.07 def blurImagesDetection(folder_path, thres=0.07): # 新建一个用于存放模糊影像的文件夹 blurImageDirPat

  • python使用wmi模块获取windows下的系统信息 监控系统

    Python用WMI模块获取Windows系统的硬件信息:硬盘分区.使用情况,内存大小,CPU型号,当前运行的进程,自启动程序及位置,系统的版本等信息. 本文实例讲述了python使用wmi模块获取windows下的系统信息 监控系统 #!/usr/bin/env python # -*- coding: utf- -*- #http://www.cnblogs.com/liu-ke/ import wmi import os import sys import platform import

  • python使用Flask框架获取用户IP地址的方法

    本文实例讲述了python使用Flask框架获取用户IP地址的方法.分享给大家供大家参考.具体如下: 下面的代码包含了html页面和python代码,非常详细,如果你正使用Flask,也可以学习一下最基本的Flask使用方法. python代码如下: from flask import Flask, render_template, request # Initialize the Flask application app = Flask(__name__) # Default route,

  • python爬虫_自动获取seebug的poc实例

    简单的写了一个爬取www.seebug.org上poc的小玩意儿~ 首先我们进行一定的抓包分析 我们遇到的第一个问题就是seebug需要登录才能进行下载,这个很好处理,只需要抓取返回值200的页面,将我们的headers信息复制下来就行了 (这里我就不放上我的headers信息了,不过headers里需要修改和注意的内容会在下文讲清楚) headers = { 'Host':******, 'Connection':'close', 'Accept':******, 'User-Agent':*

  • python使用wmi模块获取windows下硬盘信息的方法

    本文实例讲述了python使用wmi模块获取windows下硬盘信息的方法.分享给大家供大家参考.具体实现方法如下: # -*- coding: utf-8 -*- #import ######################################################################## import os, sys import time import wmi ################################################

随机推荐