python实点云分割k-means(sklearn)详解
本文实例为大家分享了Python实点云分割k-means(sklearn),供大家参考,具体内容如下
植物叶片分割
import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler from mpl_toolkits.mplot3d import Axes3D data = pd.read_csv("jiaaobo1.txt",sep = " ") data1 = data.iloc[:,0:3] #标准化 transfer = StandardScaler() data_new = transfer.fit_transform(data1) data_new #预估计流程 estimator = KMeans(n_clusters = 10) estimator.fit(data_new) y_pred = estimator.predict(data_new) #也可以不预测 #cluster = KMeans(n_clusters = 9).fit(data_new) #y_pred = cluster.labels_s #质心 #centroid = cluster.cluster_centers_ #centroid.shape fig = plt.figure() ax = Axes3D(fig) for i in range(9): ax.scatter3D(data_new[y_pred == i,0],data_new[y_pred == i,1],data_new[y_pred == i,2],marker = ".") ax.view_init(elev = 60,azim = 30) ax.set_zlabel('Z') ax.set_ylabel('Y') ax.set_xlabel('X') plt.show()
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。
相关推荐
-
Python实现投影法分割图像示例(二)
在上篇博客中,我们已经实现了水平投影和垂直投影图的绘制.接下来,我们可以根据获得的投影数据进行图像的分割,该法用于文本分割较多,所以此处依然以上次的图为例. 先把上次的两幅图搬过来,方便讲解. 上面两图分别从垂直和水平方向描述了图像中文本的分布.我们想象一下,将两幅图重叠起来(当然这里比例要调整下),那么我们就能得到四个重叠的白块,而这些白块所处的位置正是原图中文本的位置.所以接下来的任务就是,找出这些白块的坐标,此处白块近似矩形,所以我们要求矩形的四个坐标. 下面看代码. #根据水平投影值选定
-
5行Python代码实现图像分割的步骤详解
众所周知图像是由若干有意义的像素组成的,图像分割作为计算机视觉的基础,对具有现有目标和较精确边界的图像进行分割,实现在图像像素级别上的分类任务. 图像分割可分为语义分割和实例分割两类,区别如下: 语义分割:将图像中每个像素赋予一个类别标签,用不同的颜色来表示: 实例分割:无需对每个像素进行标记,只需要找到感兴趣物体的边缘轮廓. 图像分割通常应用如下所示: 专业检测:应用于专业场景的图像分析,比如在卫星图像中识别建筑.道路.森林,或在医学图像中定位病灶.测量面积等: 智能交通:识别道路信息,包括车
-
Python实现投影法分割图像示例(一)
投影法多用于图像的阈值分割.闲话不多说,现用Python实现. 上代码. import cv2 import numpy img = cv2.imread('D:/0.jpg', cv2.COLOR_BGR2GRAY) height, width = img.shape[:2] #resized = cv2.resize(img, (3*width,3*height), interpolation=cv2.INTER_CUBIC) #二值化 (_, thresh) = cv2.threshold
-
python用opencv完成图像分割并进行目标物的提取
运行平台: Windows Python版本: Python3.x IDE: Spyder 今天我们想实现的功能是对单个目标图片的提取如图所示: 图片读取 ###############头文件 import matplotlib.pyplot as plt import os import cv2 import numpy as np from PIL import Image #from skimage import io import random from PIL import Image
-
python实点云分割k-means(sklearn)详解
本文实例为大家分享了Python实点云分割k-means(sklearn),供大家参考,具体内容如下 植物叶片分割 import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler from mpl_toolkits.mplot3d import Axes
-
Python聚类算法之基本K均值实例详解
本文实例讲述了Python聚类算法之基本K均值运算技巧.分享给大家供大家参考,具体如下: 基本K均值 :选择 K 个初始质心,其中 K 是用户指定的参数,即所期望的簇的个数.每次循环中,每个点被指派到最近的质心,指派到同一个质心的点集构成一个.然后,根据指派到簇的点,更新每个簇的质心.重复指派和更新操作,直到质心不发生明显的变化. # scoding=utf-8 import pylab as pl points = [[int(eachpoint.split("#")[0]), in
-
python机器学习基础K近邻算法详解KNN
目录 一.k-近邻算法原理及API 1.k-近邻算法原理 2.k-近邻算法API 3.k-近邻算法特点 二.k-近邻算法案例分析案例信息概述 第一部分:处理数据 1.数据量缩小 2.处理时间 3.进一步处理时间 4.提取并构造时间特征 5.删除无用特征 6.签到数量少于3次的地点,删除 7.提取目标值y 8.数据分割 第二部分:特征工程 标准化 第三部分:进行算法流程 1.算法执行 2.预测结果 3.检验效果 一.k-近邻算法原理及API 1.k-近邻算法原理 如果一个样本在特征空间中的k个最相
-
基于Python Numpy的数组array和矩阵matrix详解
NumPy的主要对象是同种元素的多维数组.这是一个所有的元素都是一种类型.通过一个正整数元组索引的元素表格(通常是元素是数字). 在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank,但是和线性代数中的秩不是一样的,在用python求线代中的秩中,我们用numpy包中的linalg.matrix_rank方法计算矩阵的秩,例子如下). 结果是: 线性代数中秩的定义:设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,那末D称为矩阵
-
Python人工智能之混合高斯模型运动目标检测详解分析
[人工智能项目]混合高斯模型运动目标检测 本次工作主要对视频中运动中的人或物的边缘背景进行检测. 那么走起来瓷!!! 原视频 高斯算法提取工作 import cv2 import numpy as np # 高斯算法 class gaussian: def __init__(self): self.mean = np.zeros((1, 3)) self.covariance = 0 self.weight = 0; self.Next = None self.Previous = None c
-
python机器学习基础线性回归与岭回归算法详解
目录 一.什么是线性回归 1.线性回归简述 2.数组和矩阵 数组 矩阵 3.线性回归的算法 二.权重的求解 1.正规方程 2.梯度下降 三.线性回归案例 1.案例概述 2.数据获取 3.数据分割 4.数据标准化 5.模型训练 6.回归性能评估 7.梯度下降与正规方程区别 四.岭回归Ridge 1.过拟合与欠拟合 2.正则化 一.什么是线性回归 1.线性回归简述 线性回归,是一种趋势,通过这个趋势,我们能预测所需要得到的大致目标值.线性关系在二维中是直线关系,三维中是平面关系. 我们可以使用如下模
-
Python图片存储和访问的三种方式详解
目录 前言 数据准备 一个可以玩的数据集 图像存储的设置 LMDB HDF5 单一图像的存储 存储到 磁盘 存储到 LMDB 存储 HDF5 存储方式对比 多个图像的存储 多图像调整代码 准备数据集对比 单一图像的读取 从 磁盘 读取 从 LMDB 读取 从 HDF5 读取 读取方式对比 多个图像的读取 多图像调整代码 准备数据集对比 读写操作综合比较 数据对比 并行操作 前言 ImageNet 是一个著名的公共图像数据库,用于训练对象分类.检测和分割等任务的模型,它包含超过 1400 万张图像
-
Python实现8个概率分布公式的方法详解
目录 前言 1.均匀分布 2.高斯分布 3.对数正态分布 4.泊松分布 5.指数分布 6.二项分布 7.学生 t 分布 8.卡方分布 前言 在本文中,我们将介绍一些常见的分布并通过Python 代码进行可视化以直观地显示它们. 概率和统计知识是数据科学和机器学习的核心: 我们需要统计和概率知识来有效地收集.审查.分析数据. 现实世界中有几个现象实例被认为是统计性质的(即天气数据.销售数据.财务数据等).这意味着在某些情况下,我们已经能够开发出方法来帮助我们通过可以描述数据特征的数学函数来模拟自然
-
Python字符串和字典相关操作的实例详解
Python字符串和字典相关操作的实例详解 字符串操作: 字符串的 % 格式化操作: str = "Hello,%s.%s enough for ya ?" values = ('world','hot') print str % values 输出结果: Hello,world.hot enough for ya ? 模板字符串: #coding=utf-8 from string import Template ## 单个变量替换 s1 = Template('$x, glorio
-
Python中set与frozenset方法和区别详解
set(可变集合)与frozenset(不可变集合)的区别: set无序排序且不重复,是可变的,有add(),remove()等方法.既然是可变的,所以它不存在哈希值.基本功能包括关系测试和消除重复元素. 集合对象还支持union(联合), intersection(交集), difference(差集)和sysmmetric difference(对称差集)等数学运算. sets 支持 x in set, len(set),和 for x in set.作为一个无序的集合,sets不记录元素位
随机推荐
- 浅谈ASP.Net Core WebApi几种版本控制对比
- React Native时间转换格式工具类分享
- Delphi实现窗体感知鼠标滑过并自动隐藏与显示窗口的方法
- 枚举JavaScript对象的函数
- 让2K与XP、win2003服务器自动登陆技巧
- iOS开发中Quartz2D绘图路径的使用以及条纹效果的实现
- jQuery中$.ajax()方法参数解析
- asp.net读取磁盘文件、删除实例代码
- adnroid已安装应用中检测某应用是否安装的代码实例
- C#获取两个数的最大公约数和最小公倍数示例
- MySQL笔记之字符串函数的应用
- PHP中empty,isset,is_null用法和区别
- css文本框与按钮美化效果代码
- 利用ssh tunnel链接mysql服务器的方法
- UTF-8正则表达式如何匹配汉字
- BootStrap的table表头固定tbody滚动的实例代码
- Node.js中.pfx后缀文件的处理方法
- 详解iframe与frame的区别
- Java微信公众平台开发(12) 微信用户信息的获取
- c#实现sunday算法实例