pandas读取excel,txt,csv,pkl文件等命令的操作

pandas读取txt文件

读取txt文件需要确定txt文件是否符合基本的格式,也就是是否存在\t,,,等特殊的分隔符

一般txt文件长成这个样子

txt文件举例

下面的文件为空格间隔

1 2019-03-22 00:06:24.4463094 中文测试
2 2019-03-22 00:06:32.4565680 需要编辑encoding
3 2019-03-22 00:06:32.6835965 ashshsh
4 2017-03-22 00:06:32.8041945 eggg

读取命令采用 read_csv或者 read_table都可以

import pandas as pd
df = pd.read_table("./test.txt")
print(df)

import pandas as pd
df = pd.read_csv("./test.txt")
print(df)

但是,注意,这个地方读取出来的数据内容为3行1列的DataFrame类型,并没有按照我们的要求得到3行4列

import pandas as pd
df = pd.read_csv("./test.txt")
print(type(df))
print(df.shape)

<class 'pandas.core.frame.DataFrame'>
(3, 1)

read_csv函数

默认: 从文件、URL、文件新对象中加载带有分隔符的数据,默认分隔符是逗号。

上述txt文档并没有逗号分隔,所以在读取的时候需要增加sep分隔符参数

df = pd.read_csv("./test.txt",sep=' ')

read_pickle函数

read_pickle is only guaranteed to be backwards compatible to pandas 0.20.3.

Examples

>>> original_df = pd.DataFrame({"foo": range(5), "bar": range(5, 10)})
>>> original_df
 foo bar
0 0 5
1 1 6
2 2 7
3 3 8
4 4 9
>>> pd.to_pickle(original_df, "./dummy.pkl")
>>> unpickled_df = pd.read_pickle("./dummy.pkl")
>>> unpickled_df
 foo bar
0 0 5
1 1 6
2 2 7
3 3 8
4 4 9
>>> import os
>>> os.remove("./dummy.pkl")

补充:线上部署模型 读取pkl文件跟excel

先把生成的excel文件(pkl文件)准备好, 放到本地测试的路径下

import platform
import pandas as pd
if platform.system() == 'Windows':
 home_dir = r'F:\python_项目\主后台\r360_taobao\moxin' #本地地址
else:
 home_dir = r'/home/TG_MASTER_ADMIN_API/r360_taobao/moxin' #线上的路径找到文件前一个文件夹
def testMx():
 box = pd.read_excel(home_dir+'/规则新版设计1.xlsx', sheet_name='宜信标准评分卡')
 print("excel\t\t",box)
 box = pd.read_pickle(home_dir + '/foo.pkl')
 print("pkl\t\t",box)
if __name__ == '__main__':
 testMx()

本地测试

给线上传代码

找到主文件路径下面运行测试文件 python3 xxx.py

不好使的话去项目文件 框架下面 写一个测试文件 把那个方法写进来 python3 XXX.py就OK了

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。如有错误或未考虑完全的地方,望不吝赐教。

(0)

相关推荐

  • 用Python的pandas框架操作Excel文件中的数据教程

    引言 本文的目的,是向您展示如何使用pandas来执行一些常见的Excel任务.有些例子比较琐碎,但我觉得展示这些简单的东西与那些你可以在其他地方找到的复杂功能同等重要.作为额外的福利,我将会进行一些模糊字符串匹配,以此来展示一些小花样,以及展示pandas是如何利用完整的Python模块系统去做一些在Python中是简单,但在Excel中却很复杂的事情的. 有道理吧?让我们开始吧. 为某行添加求和项 我要介绍的第一项任务是把某几列相加然后添加一个总和栏. 首先我们将excel 数据 导入到pa

  • 详解pandas库pd.read_excel操作读取excel文件参数整理与实例

    除了使用xlrd库或者xlwt库进行对excel表格的操作读与写,而且pandas库同样支持excel的操作:且pandas操作更加简介方便. 首先是pd.read_excel的参数:函数为: pd.read_excel(io, sheetname=0,header=0,skiprows=None,index_col=None,names=None, arse_cols=None,date_parser=None,na_values=None,thousands=None, convert_fl

  • Windows下Python使用Pandas模块操作Excel文件的教程

    安装Python环境 ANACONDA是一个Python的发行版本,包含了400多个Python最常用的库,其中就包括了数据分析中需要经常使用到的Numpy和Pandas等.更重要的是,不论在哪个平台上,都可以一键安装,自动配置好环境,不需要用户任何的额外操作,非常方便.因此,安装Python环境就只需要到ANACONDA网站上下载安装文件,双击安装即可. ANACONDA官方下载地址:https://www.continuum.io/downloads 安装完成之后,使用windows + r

  • Python使用pandas处理CSV文件的实例讲解

    Python中有许多方便的库可以用来进行数据处理,尤其是Numpy和Pandas,再搭配matplot画图专用模块,功能十分强大. CSV(Comma-Separated Values)格式的文件是指以纯文本形式存储的表格数据,这意味着不能简单的使用Excel表格工具进行处理,而且Excel表格处理的数据量十分有限,而使用Pandas来处理数据量巨大的CSV文件就容易的多了. 我用到的是自己用其他硬件工具抓取得数据,硬件环境是在Linux平台上搭建的,当时数据是在运行脚本后直接输出在termin

  • pandas读取excel,txt,csv,pkl文件等命令的操作

    pandas读取txt文件 读取txt文件需要确定txt文件是否符合基本的格式,也就是是否存在\t,,,等特殊的分隔符 一般txt文件长成这个样子 txt文件举例 下面的文件为空格间隔 1 2019-03-22 00:06:24.4463094 中文测试 2 2019-03-22 00:06:32.4565680 需要编辑encoding 3 2019-03-22 00:06:32.6835965 ashshsh 4 2017-03-22 00:06:32.8041945 eggg 读取命令采用

  • pandas 读取excel文件的操作代码

    目录 一 read_excel() 的基本用法 二 read_excel() 的常用的参数: 三 示例 1. IO:路径 2. sheet_name:指定工作表名 3. header :指定标题行 4. names: 指定列名 5. index_col: 指定列索引 6. skiprows:跳过指定行数的数据 7. skipfooter:省略从尾部的行数据 8.dtype 指定某些列的数据类型 一 read_excel() 的基本用法 import pandas as pd file_name

  • pandas读取excel时获取读取进度的实现

    写在前面 QQ群里偶然看到群友问这个问题, pandas读取大文件时怎么才能获取进度? 我第一反应是: 除非pandas的read_excel等函数提供了回调函数的接口, 否则应该没办法做到. 搜索了一下官方文档和网上的帖子, 果然是没有现成的方案, 只能自己动手. 准备工作 确定方案 一开始我就确认了实现方案, 那就是增加回调函数. 这里现学现卖科普一下什么是回调函数. 简单的说就是: 所使用的模块里面, 会调用一个你给定的外部方法/函数, 就是回调函数. 拿本次的尝试作为例子, 我会编写一个

  • pandas学习之txt与sql文件的基本操作指南

    目录 前言 1.导入txt文件 2.导入sql文件 2.1 安装依赖库pymysql 3.小结 总结 前言 Pandas是python的一个数据分析包,是基于NumPy的一种工具提供了大量数据结构和函数,可以很方便的处理结构化数据,常见数据结构有: Series:一维数组,与Numpy中的一维array类似. DataFrame:二维的表格型数据结构,可以将DataFrame理解为Series的容器 Time- Series:以时间为索引的Series Panel :三维的数组,可以理解为Dat

  • 如何利用python创建、读取和修改CSV数据文件

    目录 1 写入CSV文件 2 读取CSV文件 3 修改CSV文件 总结 简单展示如何利用python中的pandas库创建.读取.修改CSV数据文件 1 写入CSV文件 import numpy as np import pandas as pd # -----create an initial numpy array----- # data = np.zeros((8,4)) # print(data.dtype) # print(type(data)) # print(data.shape)

  • pandas读取Excel批量转换时间戳的实践

    目录 一.安装 二. 代码如下 python将GPS时间戳批量转换为日期时间(年月日时分秒) 一.安装 pip install pandas 如果出报错,不能运行,可以安装 pip install xlrd 二. 代码如下 import pandas as pd import time,datetime file_path = r'C:\Users\Administrator\Desktop\携号转网测试\admin_log.xls' df = pd.read_excel(file_path,

  • 解决python pandas读取excel中多个不同sheet表格存在的问题

    摘要:不同方法读取excel中的多个不同sheet表格性能比较 # 方法1 def read_excel(path): df=pd.read_excel(path,None) print(df.keys()) # for k,v in df.items(): # print(k) # print(v) # print(type(v)) return df # 方法2 def read_excel1(path): data_xls = pd.ExcelFile(path) print(data_x

  • Python Pandas读取Excel日期数据的异常处理方法

    目录 异常描述 出现原因 解决方案:修改自定义格式 pandas直接解析Excel数值为日期 总结 异常描述 有时我们的Excel有一个调整过自定义格式的日期字段: 当我们用pandas读取时却是这样的效果: 不管如何指定参数都无效. 出现原因 没有使用系统内置的日期单元格格式,自定义格式没有对负数格式进行定义,pandas读取时无法识别出是日期格式,而是读取出单元格实际存储的数值. 解决方案:修改自定义格式 可以修改为系统内置的自定义格式: 或者在自定义格式上补充负数的定义: 增加;@即可 p

  • python读取与写入csv格式文件的示例代码

    在数据分析中经常需要从csv格式的文件中存取数据以及将数据写书到csv文件中.将csv文件中的数据直接读取为 dict 类型和 DataFrame 是非常方便也很省事的一种做法,以下代码以鸢尾花数据为例. csv文件读取为dict 代码 # -*- coding: utf-8 -*- import csv with open('E:/iris.csv') as csvfile: reader = csv.DictReader(csvfile, fieldnames=None) # fieldna

  • JS兼容浏览器的导出Excel(CSV)文件的方法

    Js导出表格为Excel文件 的常见一种办法是调用:ActiveXObject("Excel.Application") ,但是这种方法有局限性,只能在IE系列下的浏览器里实现,兼容性方面不理想. 经测试,采用本文推荐的方法能兼容性较好的导出表格内容到Excel文件. 复制代码 代码如下: var str = "博客, 域名\nBlog, 2\njb51.net, 3";var uri = 'data:text/csv;charset=utf-8,' + str;

随机推荐