Pandas sample随机抽样的实现

随机抽样,是统计学中常用的一种方法,它可以帮助我们从大量的数据中快速地构建出一组数据分析模型。在 Pandas 中,如果想要对数据集进行随机抽样,需要使用 sample() 函数。

sample() 函数的语法格式如下:

DataFrame.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None)

参数说明如下表所示:

参数名称 参数说明
n 表示要抽取的行数。
frac 表示抽取的比例,比如 frac=0.5,代表抽取总体数据的50%。
replace 布尔值参数,表示是否以有放回抽样的方式进行选择,默认为 False,取出数据后不再放回。
weights 可选参数,代表每个样本的权重值,参数值是字符串或者数组。
random_state 可选参数,控制随机状态,默认为 None,表示随机数据不会重复;若为 1 表示会取得重复数据。
axis 表示在哪个方向上抽取数据(axis=1 表示列/axis=0 表示行)。
该函数返回与数据集类型相同的新对象,相当于 numpy.random.choice()。实例如下:  
import pandas as pd
dict = {'name':["Jack", "Tom", "Helen", "John"],'age': [28, 39, 34, 36],'score':[98,92,91,89]}
info = pd.DataFrame(dict)
#默认随机选择两行
info.sample(n=2)
#随机选择两列
info.sample(n=2,axis=1)

输出结果:

name  age  score
3  John   36     89
0  Jack   28     98

score   name
0     98   Jack
1     92    Tom
2     91  Helen
3     89   John

再来看一组示例:

import pandas as pd
info = pd.DataFrame({'data1': [2, 6, 8, 0], 'data2': [2, 5, 0, 8], 'data3': [12, 2, 1, 8]}, index=['John', 'Parker', 'Smith', 'William'])
info
#随机抽取3个数据
info['data1'].sample(n=3)
#总体的50%
info.sample(frac=0.5, replace=True)
#data3序列为权重值,并且允许重复数据出现
info.sample(n=2, weights='data3', random_state=1)

输出结果:

随机选择3行数据:
William    0
Smith      8
Parker     6
Name: data1, dtype: int64

data1  data2  data3
John         2      2     12
William      0      8      8

data1  data2  data3
John         2      2     12
William      0      8      8

到此这篇关于Pandas sample随机抽样的实现的文章就介绍到这了,更多相关Pandas sample随机抽样内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • pandas之query方法和sample随机抽样操作

    query方法 在 pandas 中,支持把字符串形式的查询表达式传入 query 方法来查询数据,其表达式的执行结果必须返回布尔列表.在进行复杂索引时,由于这种检索方式无需像普通方法一样重复使用 DataFrame 的名字来引用列名,一般而言会使代码长度在不降低可读性的前提下有所减少. 例如 In [61]: df.query('((School == "Fudan University")&' ....: ' (Grade == "Senior")&am

  • Pandas sample随机抽样的实现

    随机抽样,是统计学中常用的一种方法,它可以帮助我们从大量的数据中快速地构建出一组数据分析模型.在 Pandas 中,如果想要对数据集进行随机抽样,需要使用 sample() 函数. sample() 函数的语法格式如下: DataFrame.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None) 参数说明如下表所示: 参数名称 参数说明 n 表示要抽取的行数. frac 表示抽取的比

  • python Pandas如何对数据集随机抽样

    摘要:有时候我们只需要数据集中的一部分,并不需要全部的数据.这个时候我们就要对数据集进行随机的抽样.pandas中自带有抽样的方法. 应用场景: 我有10W行数据,每一行都11列的属性. 现在,我们只需要随机抽取其中的2W行. 实现方法很简单: 利用Pandas库中的sample. DataFrame.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None) n是要抽取的行数.(例如n

  • 浅析pandas随机排列与随机抽样

    随机排列 利用 numpy.random.permutation() 函数,可以返回一个序列的随机排列.将此随机排列作为 take() 函数的参数,通过应用 take() 函数就可实现按此随机排列来调整 Series 对象或 DataFrame 对象各行的顺序. 其示例代码 example1.py 如下: import numpy as np import pandas as pd #创建DataFrame df = pd.DataFrame(np.arange(12).reshape(4,3)

  • pandas df.sample()的使用

    sample()函数常用来随机获取dataFrame中数据,可以用于快速查看. 常用的有以下入参: n :指定获取的数量,默认为1 axis:指定随机获取的是行还是列.0表示行,1表示列,默认为0 weitghts:指定权重信息,需要与 行或者列的数目相等,为列表 frac:百分比,随机获取的百分比比重 下面举例: >>> df      name  score grade id                     a     bog     45     A c   jiken  

  • Pandas 数据框增、删、改、查、去重、抽样基本操作方法

    总括 pandas的索引函数主要有三种: loc 标签索引,行和列的名称 iloc 整型索引(绝对位置索引),绝对意义上的几行几列,起始索引为0 ix 是 iloc 和 loc的合体 at是loc的快捷方式 iat是iloc的快捷方式 建立测试数据集: import pandas as pd df = pd.DataFrame({'a': [1, 2, 3], 'b': ['a', 'b', 'c'],'c': ["A","B","C"]}) p

  • python实现的分层随机抽样案例

    昨天写了一段用来做分层随机抽样的代码,很粗糙,不过用公司的2万名导购名单试了一下,结果感人,我觉得此刻的我已经要上天了,哈哈哈哈哈哈 代码如下: #分层随机抽样 stratified sampling import xlrd, xlwt, time, random xl = xlrd.open_workbook(r'C:\Users\Administrator\Desktop\分层抽样.xlsx') xl_sht1 = xl.sheets()[0] xl_sht1_nrows = xl_sht1

  • python使用pandas抽样训练数据中某个类别实例

    废话真的一句也不想多说,直接看代码吧! # -*- coding: utf-8 -*- import numpy from sklearn import metrics from sklearn.svm import LinearSVC from sklearn.naive_bayes import MultinomialNB from sklearn import linear_model from sklearn.datasets import load_iris from sklearn.

  • Pandas中DataFrame基本函数整理(小结)

    构造函数 DataFrame([data, index, columns, dtype, copy]) #构造数据框 属性和数据 DataFrame.axes #index: 行标签:columns: 列标签 DataFrame.as_matrix([columns]) #转换为矩阵 DataFrame.dtypes #返回数据的类型 DataFrame.ftypes #返回每一列的 数据类型float64:dense DataFrame.get_dtype_counts() #返回数据框数据类

  • Pandas数据分析常用函数的使用

    目录 一.数据导入导出 二.数据加工处理 三.列表格式设置 Pandas是数据处理和分析过程中常用的Python包,提供了大量能使我们快速便捷地处理数据的函数和方法,在此主要整理数据分析过程pandas包常用函数,以便查询.更多函数学习详见padans官网 一.数据导入导出 pandas提供了一些用于将表格型数据读取为DataFrame对象函数,如read_csv,read_table.输入pd.read后,按Tab键,系统将把以read开头的函数和模块都列出来,根据需要读取的文件类型选取. #

随机推荐