基于PyTorch的permute和reshape/view的区别介绍

二维的情况

先用二维tensor作为例子,方便理解。

permute作用为调换Tensor的维度,参数为调换的维度。例如对于一个二维Tensor来说,调用tensor.permute(1,0)意为将1轴(列轴)与0轴(行轴)调换,相当于进行转置。

In [20]: a
Out[20]:
tensor([[0, 1, 2],
  [3, 4, 5]])  

In [21]: a.permute(1,0)
Out[21]:
tensor([[0, 3],
  [1, 4],
  [2, 5]]) 

如果使用view(3,2)或reshape(3,2),得到的tensor并不是转置的效果,而是相当于将原tensor的元素按行取出,然后按行放入到新形状的tensor中。

In [22]: a.reshape(3,2)
Out[22]:
tensor([[0, 1],
  [2, 3],
  [4, 5]])  

In [23]: a.view(3,2)
Out[23]:
tensor([[0, 1],
  [2, 3],
  [4, 5]]) 

高维的情况

一般使用permute的情况都是在更高维的情况下使用,例如对于一个图像batch,其形状为[batch, channel, height, width],我们可以使用tensor.permute(0,3,2,1)得到形状为[batch, width, height, channel]的tensor.

我们构造一个模拟的batch用于演示。

In [25]: a=torch.arange(2*3*2*1).reshape(2,3,2,1) 

In [26]: a
Out[26]:
tensor([[[[ 0],    # 这是第0张“图片”的第0号通道的2个元素
   [ 1]],         

   [[ 2],    # 这是第0张“图片”的第1号通道的2个元素
   [ 3]],         

   [[ 4],    # 这是第0张“图片”的第2号通道的2个元素
   [ 5]]],         

  [[[ 6],
   [ 7]],         

   [[ 8],
   [ 9]],         

   [[10],
   [11]]]]) 

a的形状为[2,3,2,1],这个batch有2张“图片”,每张图片有3个通道,每个通道为2x1,例如第0张图片的第0号通道为[[0], [1]].

In [27]: a.permute(0,3,2,1)
Out[27]:
tensor([[[[ 0, 2, 4],
   [ 1, 3, 5]]],

  [[[ 6, 8, 10],
   [ 7, 9, 11]]]])
In [28]: a.permute(0,3,2,1).shape
Out[28]: torch.Size([2, 1, 2, 3])

形状为[2,3,2,1]的batch执行permute(0,3,2,1)交换维度之后,得到的是[2,1,2,3],即[batch, width, height, channel]

可以理解为,对于一个高维的Tensor执行permute,我们没有改变数据的相对位置,而只是旋转了一下这个(超)立方体。或者也可以说,改变了我们对这个(超)立方体的“观察角度”而已。

补充知识:pytorch: torch.Tensor.view ------ reshape

如下所示:

torch.Tensoe.view(python method, in torch.Tensor)

作用: 将输入的torch.Tensor改变形状(size)并返回.返回的Tensor与输入的Tensor必须有相同的元素,相同的元素数目,但形状可以不一样

即,view起到的作用是reshape,view的参数的是改变后的shape.

示例如下:

>>> x = torch.randn(4, 4)
>>> x.size()
torch.Size([4, 4])
>>> y = x.view(16)
>>> y.size()
torch.Size([16])
>>> z = x.view(-1, 8) # the size -1 is inferred from other dimensions
>>> z.size()
torch.Size([2, 8])

view_as:

tensor_1.view_as(tensor_2):将tensor_1的形状改成与tensor_2一样

以上这篇基于PyTorch的permute和reshape/view的区别介绍就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 在keras中model.fit_generator()和model.fit()的区别说明

    首先Keras中的fit()函数传入的x_train和y_train是被完整的加载进内存的,当然用起来很方便,但是如果我们数据量很大,那么是不可能将所有数据载入内存的,必将导致内存泄漏,这时候我们可以用fit_generator函数来进行训练. keras中文文档 fit fit(x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0.0, validation_data=N

  • 浅谈keras2 predict和fit_generator的坑

    1.使用predict时,必须设置batch_size,否则效率奇低. 查看keras文档中,predict函数原型: predict(self, x, batch_size=32, verbose=0) 说明: 只使用batch_size=32,也就是说每次将batch_size=32的数据通过PCI总线传到GPU,然后进行预测.在一些问题中,batch_size=32明显是非常小的.而通过PCI传数据是非常耗时的. 所以,使用的时候会发现预测数据时效率奇低,其原因就是batch_size太小

  • 使用Keras中的ImageDataGenerator进行批次读图方式

    ImageDataGenerator位于keras.preprocessing.image模块当中,可用于做数据增强,或者仅仅用于一个批次一个批次的读进图片数据.一开始以为ImageDataGenerator是用来做数据增强的,但我的目的只是想一个batch一个batch的读进图片而已,所以一开始没用它,后来发现它是有这个功能的,而且使用起来很方便. ImageDataGenerator类包含了如下参数:(keras中文教程) ImageDataGenerator(featurewise_cen

  • 浅谈keras通过model.fit_generator训练模型(节省内存)

    前言 前段时间在训练模型的时候,发现当训练集的数量过大,并且输入的图片维度过大时,很容易就超内存了,举个简单例子,如果我们有20000个样本,输入图片的维度是224x224x3,用float32存储,那么如果我们一次性将全部数据载入内存的话,总共就需要20000x224x224x3x32bit/8=11.2GB 这么大的内存,所以如果一次性要加载全部数据集的话是需要很大内存的. 如果我们直接用keras的fit函数来训练模型的话,是需要传入全部训练数据,但是好在提供了fit_generator,

  • 基于PyTorch的permute和reshape/view的区别介绍

    二维的情况 先用二维tensor作为例子,方便理解. permute作用为调换Tensor的维度,参数为调换的维度.例如对于一个二维Tensor来说,调用tensor.permute(1,0)意为将1轴(列轴)与0轴(行轴)调换,相当于进行转置. In [20]: a Out[20]: tensor([[0, 1, 2], [3, 4, 5]]) In [21]: a.permute(1,0) Out[21]: tensor([[0, 3], [1, 4], [2, 5]]) 如果使用view(

  • 基于C语言char与unsigned char的区别介绍

    在C中,默认的基础数据类型均为signed,现在我们以char为例,说明(signed) char与unsigned char之间的区别. 首先在内存中,char与unsigned char没有什么不同,都是一个字节,唯一的区别是,char的最高位为符号位,因此char能表示-127~127,unsigned char没有符号位,因此能表示0~255,这个好理解,8个bit,最多256种情况,因此无论如何都能表示256个数字. 在实际使用过程种有什么区别呢?主要是符号位,但是在普通的赋值,读写文

  • Python机器学习之基于Pytorch实现猫狗分类

    一.环境配置 安装Anaconda 具体安装过程,请点击本文 配置Pytorch pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torch pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torchvision 二.数据集的准备 1.数据集的下载 kaggle网站的数据集下载地址: https://www.kaggle.com/lizhensheng/-2000 2.

  • Python基于Pytorch的特征图提取实例

    目录 简述 单个图片的提取 神经网络的构建 特征图的提取 可视化展示 完整代码 总结 简述 为了方便理解卷积神经网络的运行过程,需要对卷积神经网络的运行结果进行可视化的展示. 大致可分为如下步骤: 单个图片的提取 神经网络的构建 特征图的提取 可视化展示 单个图片的提取 根据目标要求,需要对单个图片进行卷积运算,但是Pytorch中读取数据主要用到torch.utils.data.DataLoader类,因此我们需要编写单个图片的读取程序 def get_picture(picture_dir,

  • pytorch中permute()函数用法实例详解

    目录 前言 三维情况 变化一:不改变任何参数 变化二:1与2交换 变化三:0与1交换 变化四:0与2交换 变化五:0与1交换,1与2交换 变化六:0与1交换,0与2交换 总结 前言 本文只讨论二维三维中的permute用法 最近的Attention学习中的一个permute函数让我不理解 这个光说太抽象 我就结合代码与图片解释一下 首先创建一个三维数组小实例 import torch x = torch.linspace(1, 30, steps=30).view(3,2,5) # 设置一个三维

  • pytorch 在sequential中使用view来reshape的例子

    pytorch中view是tensor方法,然而在sequential中包装的是nn.module的子类,因此需要自己定义一个方法: import torch.nn as nn class Reshape(nn.Module): def __init__(self, *args): super(Reshape, self).__init__() self.shape = args def forward(self, x): # 如果数据集最后一个batch样本数量小于定义的batch_batch

  • 基于PyTorch中view的用法说明

    相当于numpy中resize()的功能,但是用法可能不太一样. 我的理解是: 把原先tensor中的数据按照行优先的顺序排成一个一维的数据(这里应该是因为要求地址是连续存储的),然后按照参数组合成其他维度的tensor. 比如说是不管你原先的数据是[[[1,2,3],[4,5,6]]]还是[1,2,3,4,5,6],因为它们排成一维向量都是6个元素,所以只要view后面的参数一致,得到的结果都是一样的. 比如, a=torch.Tensor([[[1,2,3],[4,5,6]]]) b=tor

  • 基于Pytorch SSD模型分析

    本文参考github上SSD实现,对模型进行分析,主要分析模型组成及输入输出大小.SSD网络结构如下图: 每输入的图像有8732个框输出; import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable #from layers import * from data import voc, coco import os base = { '300': [6

  • PyTorch中permute的用法详解

    permute(dims) 将tensor的维度换位. 参数:参数是一系列的整数,代表原来张量的维度.比如三维就有0,1,2这些dimension. 例: import torch import numpy as np a=np.array([[[1,2,3],[4,5,6]]]) unpermuted=torch.tensor(a) print(unpermuted.size()) # --> torch.Size([1, 2, 3]) permuted=unpermuted.permute(

  • 基于pytorch的lstm参数使用详解

    lstm(*input, **kwargs) 将多层长短时记忆(LSTM)神经网络应用于输入序列. 参数: input_size:输入'x'中预期特性的数量 hidden_size:隐藏状态'h'中的特性数量 num_layers:循环层的数量.例如,设置' ' num_layers=2 ' '意味着将两个LSTM堆叠在一起,形成一个'堆叠的LSTM ',第二个LSTM接收第一个LSTM的输出并计算最终结果.默认值:1 bias:如果' False',则该层不使用偏置权重' b_ih '和' b

随机推荐