Go并发编程中sync/errGroup的使用

目录
  • 一.序
  • 二.errGroup
    • 2.1 函数签名
  • 三.源码
    • 3.1 Group
    • 3.2 WaitContext
    • 3.3 Go
    • 3.4 Wait
  • 四. 案例
  • 五. 参考

一.序

这一篇算是并发编程的一个补充,起因是当前有个项目,大概の 需求是,根据kafka的分区(partition)数,创建同等数量的 消费者( goroutine)从不同的分区中消费者消费数据,但是总有某种原因导致,某一个分区消费者创建失败,但是其他分区消费者创建失败。 最初的逻辑是,忽略分区失败的逻辑,将成功创建的分区消费者收集,用于获取消息进行数据处理。 代码就不在这里展示。

问题其实很明确: 如果在初始化分区消费者时,只要有一个消费创建失败,那么初始化工作就算失败,程序应该panic,退出。

但是当初设计时,消费者负责从kafka上游的某个topic获取到数据,然后经过数据处理后,再通过生产者将处理后的数据发送到下游的topic中,由于当时设计时,代码耦合比较重,导致无法通过初始化工作做这些,只能在启动生产者后, 再创建消费者,这就导致 创建消费者-->获取数据-->处理数据 杂糅到了一起。 这个问题一直到最近才有时间想着来解决。

比如有三个分区创建了三个分区的消费者,每个分区的消费者对应从自己的分区重获取数据,三个分区最初使用waitGroup进行控制三个分区创建,只有当三个分区都创建完成后才会执行后续逻辑。 但是 waitgroup并不能很好的解决:只要一个 goroutine 出错我们就不再等其他 goroutine 了,就默认创建分区消费者失败了,所以此时便想到了 errGroup

二.errGroup

errGroup 是google开源的基础扩展库。使用时先进行下载

go get -u golang.org/x/sync

2.1 函数签名

type Group struct {
 // contains filtered or unexported fields
}

    func WithContext(ctx context.Context) (*Group, context.Context)
    func (g *Group) Go(f func() error)
    func (g *Group) Wait() error

整个包就一个 Group 结构体

  • 通过WaitContext 可以创建一个带取消的group
  • Go 方法传入一个 func() error 内部会启动一个goroutine 去处理
  • Wait 类似WaitGroup的Wait 方法,等待所有的 goroutine结束后退出,返回的错误是一个出错的 err

三.源码

3.1 Group

type Group struct {
    // context 的 cancel 方法
 cancel func()

    // 复用 WaitGroup
 wg sync.WaitGroup

 // 用来保证只会接受一次错误
 errOnce sync.Once
    // 保存第一个返回的错误
 err     error
}

3.2 WaitContext

func WithContext(ctx context.Context) (*Group, context.Context) {
 ctx, cancel := context.WithCancel(ctx)
 return &Group{cancel: cancel}, ctx
}

WithContext 就是使用 WithCancel 创建一个可以取消的 context 将 cancel 赋值给 Group 保存起来,然后再将 context 返回回去

注意这里有一个坑,在后面的代码中不要把这个 ctx 当做父 context 又传给下游,因为 errgroup 取消了,这个 context 就没用了,会导致下游复用的时候出错

3.3 Go

func (g *Group) Go(f func() error) {
 g.wg.Add(1)

 go func() {
  defer g.wg.Done()

        // 通过执行传入的匿名函数返回的错误值判断是否需要执行cancel
  if err := f(); err != nil {
      // 这一点很重要,确保错误只会被执行一次
   g.errOnce.Do(func() {
    g.err = err
    if g.cancel != nil {
     g.cancel()
    }
   })
  }
 }()
}

Go 方法是一个封装,相当于go 关键字的加强,会启动一个携程,然后利用waitgroup 来控制是否结束,如果有一个非 nil 的 error 出现就会保存起来并且如果有 cancel 就会调用 cancel 取消掉,使 ctx 返回

3.4 Wait

func (g *Group) Wait() error {
 g.wg.Wait()
 if g.cancel != nil {
  g.cancel()
 }
 return g.err
}

Wait 方法其实就是调用 WaitGroup 等待,如果有 cancel 就调用一下

四. 案例

基于 errgroup 实现一个 http server 的启动和关闭 ,以及 linux signal 信号的注册和处理,要保证能够 一个退出,全部注销退出。

package main

import (
 "context"
 "fmt"
 "log"
 "net/http"
 "os"
 "os/signal"
 "syscall"
 "time"

 "golang.org/x/sync/errgroup"
)

func main() {
 g, ctx := errgroup.WithContext(context.Background())

 mux := http.NewServeMux()
 mux.HandleFunc("/ping", func(w http.ResponseWriter, r *http.Request) {
  _, _ = w.Write([]byte("pong"))
 })

 // 模拟单个服务错误退出
 serverOut := make(chan struct{})
 mux.HandleFunc("/shutdown", func(w http.ResponseWriter, r *http.Request) {
  serverOut <- struct{}{}
 })

 server := http.Server{
  Handler: mux,
  Addr:    ":8099",
 }

 // g1
 // g1 退出了所有的协程都能退出么?
 // g1 退出后, context 将不再阻塞,g2, g3 都会随之退出
 // 然后 main 函数中的 g.Wait() 退出,所有协程都会退出
 g.Go(func() error {
  err := server.ListenAndServe() // 服务启动后会阻塞, 虽然使用的是 go 启动,但是由于 g.WaitGroup 试得其是个阻塞的 协程
  if err != nil {
   log.Println("g1 error,will exit.", err.Error())
  }
  return err
 })

 // g2
 // g2 退出了所有的协程都能退出么?
 // 到调用 `/shutdown`接口时, serverOut 无缓冲管道写入数据, case接收到数据后执行server.shutdown, 此时 g1 httpServer会退出
 // g1退出后,会返回error,将error加到g中,同时会调用 cancel()
 // g3 中会 select case ctx.Done, context 将不再阻塞,g3 会随之退出
 // 然后 main 函数中的 g.Wait() 退出,所有协程都会退出
 g.Go(func() error {
  select {
  case <-ctx.Done():
   log.Println("g2 errgroup exit...")
  case <-serverOut:
   log.Println("g2, request `/shutdown`, server will out...")
  }

  timeoutCtx, cancel := context.WithTimeout(context.Background(), 3*time.Second)
  // 这里不是必须的,但是如果使用 _ 的话静态扫描工具会报错,加上也无伤大雅
  defer cancel()

  err := server.Shutdown(timeoutCtx)
  log.Println("shutting down server...")
  return err
 })

 // g3
 // g3 捕获到 os 退出信号将会退出
 // g3 退出了所有的协程都能退出么?
 // g3 退出后, context 将不再阻塞,g2 会随之退出
 // g2 退出时,调用了 shutdown,g1 会退出
 // 然后 main 函数中的 g.Wait() 退出,所有协程都会退出
 g.Go(func() error {
  quit := make(chan os.Signal, 0)
  signal.Notify(quit, syscall.SIGINT, syscall.SIGTERM)

  select {
  case <-ctx.Done():
   log.Println("g3, ctx execute cancel...")
   log.Println("g3 error,", ctx.Err().Error())
   // 当g2退出时,已经有错误了,此时的error 并不会覆盖到g中
   return ctx.Err()
  case sig := <-quit:
   return fmt.Errorf("g3 get os signal: %v", sig)
  }
 })

 // g.Wait 等待所有 go执行完毕后执行
 fmt.Printf("end, errgroup exiting, %+v\n", g.Wait())
}

运行测试

D:\gopath\src\Go_base\daily_test\errorGroup>go run demo.go

浏览器输入http://127.0.0.1:8099/shutdown

控制台输出

2021/12/11 10:52:03 g2, request `/shutdown`, server will out...
2021/12/11 10:52:03 g1 error,will exit. http: Server closed
2021/12/11 10:52:03 g3, ctx execute cancel...
2021/12/11 10:52:03 g3 error, context canceled // 间隔了3s
2021/12/11 10:52:06 shutting down server...
end, errgroup exiting, http: Server closed

从执行结果可以看出,这种退出可以保证每个goroutine都能在完成正在执行的工作后退出

在terminal 按ctrl + c

输出
2021/12/11 10:55:51 g2 errgroup exit...
2021/12/11 10:55:51 g1 error,will exit. http: Server closed
2021/12/11 10:55:51 shutting down server...
end, errgroup exiting, g3 get os signal: interrupt

分析都在代码注释中

五. 参考

https://lailin.xyz/post/go-training-week3-errgroup.html
https://pkg.go.dev/golang.org/x/sync/errgroup

到此这篇关于Go并发编程中sync/errGroup的使用的文章就介绍到这了,更多相关Go sync/errGroup内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 在golang中使用Sync.WaitGroup解决等待的问题

    面对goroutine我们都需要等待它完成交给它的事情,等待它计算完成或是执行完毕,所以不得不在程序需要等待的地方使用time.Sleep()来睡眠一段时间,等待其他goroytine执行完毕,下面的代码打印1到100的for循环可以在很快的时间内运行完毕,但是我们必须添加time.Sleep()来等待其打印完毕,如果我们不等待仿佛什么也没有发生一样.....这肯定不是我们想要的! func main(){ for i := 0; i < 100 ; i++{ go fmt.Println(i)

  • Go并发编程之sync.Once使用实例详解

    目录 一.序 二. 源码分析 2.1结构体 2.2 接口 三. 使用场景案例 3.1 单例模式 3.2 加载配置文件示例 四.总结 五. 参考 一.序 单从库名大概就能猜出其作用.sync.Once使用起来很简单, 下面是一个简单的使用案例 package main import ( "fmt" "sync" ) func main() { var ( once sync.Once wg sync.WaitGroup ) for i := 0; i < 10;

  • Django如何使用asyncio协程和ThreadPoolExecutor多线程

    Django视图函数执行,不在主线程中,直接loop = asyncio.new_event_loop() # 不能loop = asyncio.get_event_loop() 会触发RuntimeError: There is no current event loop in thread 因为asyncio程序中的每个线程都有自己的事件循环,但它只会在主线程中为你自动创建一个事件循环.所以如果你asyncio.get_event_loop在主线程中调用一次,它将自动创建一个循环对象并将其设

  • Go 并发读写 sync.map 详细

    目录 1.sync.Map 优势 2.性能测试 2.1 压测结果 1)写入 2)查找 3)删除 2.3 场景分析 3.sync.Map 剖析 3.1 数据结构 3.2 查找过程 3.3 写入过程 3.4 删除过程 map 的两种目前在业界使用的最多的并发支持的模式分别是: 原生 map + 互斥锁或读写锁 mutex. 标准库 sync.Map(Go1.9及以后). 有了选择,总是有选择困难症的,这两种到底怎么选,谁的性能更加的好?我有一个朋友说 标准库 sync.Map 性能菜的很,不要用.我

  • golang中使用sync.Map的方法

    背景 go中map数据结构不是线程安全的,即多个goroutine同时操作一个map,则会报错,因此go1.9之后诞生了sync.Map sync.Map思路来自java的ConcurrentHashMap 接口 sync.map就是1.9版本带的线程安全map,主要有如下几种方法: Load(key interface{}) (value interface{}, ok bool) //通过提供一个键key,查找对应的值value,如果不存在,则返回nil.ok的结果表示是否在map中找到值

  • Go语言并发编程 sync.Once

    sync.Once用于保证某个动作只被执行一次,可用于单例模式中,比如初始化配置.我们知道init()函数也只会执行一次,不过它是在main()函数之前执行,如果想要在代码执行过程中只运行某个动作一次,可以使用sync.Once,下面来介绍一下它的使用方法. 先来看下面的代码: package main import ( "fmt" "sync" ) func main() { var num = 6 var once sync.Once add_one := fu

  • Go语言中sync.Cond使用详解

    目录 sync.Cond 可以用来干什么? 与 Sync.Mutex 的区别 sync.Cond 使用场景 sync.Cond sync.Cond 有哪些方法 NewCond 创建实例 Broadcast 广播唤醒所有 Signal 唤醒一个协程 Wait 等待 代码示例 sync.Cond 可以用来干什么? Golang 的 sync 包中的 Cond 实现了一种条件变量,可以使用多个 Reader 等待公共资源. 每个 Cond 都会关联一个 Lock ,当修改条件或者调用 Wait 方法,

  • Golang之sync.Pool使用详解

    前言 我们通常用 Golang 来开发并构建高并发场景下的服务,但是由于 Golang 内建的GC机制多少会影响服务的性能,因此,为了减少频繁GC,Golang提供了对象重用的机制,也就是使用sync.Pool构建对象池. sync.Pool介绍 首先sync.Pool是可伸缩的临时对象池,也是并发安全的.其可伸缩的大小会受限于内存的大小,可以理解为是一个存放可重用对象的容器.sync.Pool设计的目的就是用于存放已经分配的但是暂时又不用的对象,而且在需要用到的时候,可以直接从该pool中取.

  • Golang中的sync包的WaitGroup操作

    sync的waitgroup功能 WaitGroup 使用多线程时,进行等待多线程执行完毕后,才可以结束函数,有两个选择 channel waitgroup 首先使用channel func add (n *int , isok chan bool){ for i :=0 ;i <1000 ; i ++ { *n = *n + 1 } isok <- true } func main () { var ok = make(chan bool , 2) var i,u = 0,0 go add(

  • 深入Golang中的sync.Pool详解

    我们通常用golang来构建高并发场景下的应用,但是由于golang内建的GC机制会影响应用的性能,为了减少GC,golang提供了对象重用的机制,也就是sync.Pool对象池. sync.Pool是可伸缩的,并发安全的.其大小仅受限于内存的大小,可以被看作是一个存放可重用对象的值的容器. 设计的目的是存放已经分配的但是暂时不用的对象,在需要用到的时候直接从pool中取. 任何存放区其中的值可以在任何时候被删除而不通知,在高负载下可以动态的扩容,在不活跃时对象池会收缩. sync.Pool首先

随机推荐