PyTorch使用cpu加载模型运算方式
没gpu没cuda支持的时候加载模型到cpu上计算
将
model = torch.load(path, map_location=lambda storage, loc: storage.cuda(device))
改为
model = torch.load(path, map_location='cpu')
然后删掉所有变量后面的.cuda()方法
以上这篇PyTorch使用cpu加载模型运算方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
基于pytorch的保存和加载模型参数的方法
当我们花费大量的精力训练完网络,下次预测数据时不想再(有时也不必再)训练一次时,这时候torch.save(),torch.load()就要登场了. 保存和加载模型参数有两种方式: 方式一: torch.save(net.state_dict(),path): 功能:保存训练完的网络的各层参数(即weights和bias) 其中:net.state_dict()获取各层参数,path是文件存放路径(通常保存文件格式为.pt或.pth) net2.load_state_dict(torch.loa
-
Pytorch 数据加载与数据预处理方式
数据加载分为加载torchvision.datasets中的数据集以及加载自己使用的数据集两种情况. torchvision.datasets中的数据集 torchvision.datasets中自带MNIST,Imagenet-12,CIFAR等数据集,所有的数据集都是torch.utils.data.Dataset的子类,都包含 _ _ len _ (获取数据集长度)和 _ getItem _ _ (获取数据集中每一项)两个子方法. Dataset源码如上,可以看到其中包含了两个没有实现的子
-
将Pytorch模型从CPU转换成GPU的实现方法
最近将Pytorch程序迁移到GPU上去的一些工作和思考 环境:Ubuntu 16.04.3 Python版本:3.5.2 Pytorch版本:0.4.0 0. 序言 大家知道,在深度学习中使用GPU来对模型进行训练是可以通过并行化其计算来提高运行效率,这里就不多谈了. 最近申请到了实验室的服务器来跑程序,成功将我简陋的程序改成了"高大上"GPU版本. 看到网上总体来说少了很多介绍,这里决定将我的一些思考和工作记录下来. 1. 如何进行迁移 由于我使用的是Pytorch写的模型,网上给
-
Pytorch中实现只导入部分模型参数的方式
我们在做迁移学习,或者在分割,检测等任务想使用预训练好的模型,同时又有自己修改之后的结构,使得模型文件保存的参数,有一部分是不需要的(don't expected).我们搭建的网络对保存文件来说,有一部分参数也是没有的(missed).如果依旧使用torch.load(model.state_dict())的办法,就会出现 xxx expected,xxx missed类似的错误.那么在这种情况下,该如何导入模型呢? 好在Pytorch中的模型参数使用字典保存的,键是参数的名称,值是参数的具体数
-
pytorch构建网络模型的4种方法
利用pytorch来构建网络模型有很多种方法,以下简单列出其中的四种. 假设构建一个网络模型如下: 卷积层-->Relu层-->池化层-->全连接层-->Relu层-->全连接层 首先导入几种方法用到的包: import torch import torch.nn.functional as F from collections import OrderedDict 第一种方法 # Method 1 --------------------------------------
-
PyTorch使用cpu加载模型运算方式
没gpu没cuda支持的时候加载模型到cpu上计算 将 model = torch.load(path, map_location=lambda storage, loc: storage.cuda(device)) 改为 model = torch.load(path, map_location='cpu') 然后删掉所有变量后面的.cuda()方法 以上这篇PyTorch使用cpu加载模型运算方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.
-
Pytorch加载数据集的方式总结及补充
目录 前言 一.自己重写定义(Dataset.DataLoader) 二.用Pytorch自带的类(ImageFolder.datasets.DataLoader) 2.1 加载自己的数据集 2.1.1 ImageFolder介绍 2.2.2 ImageFolder加载数据集完整例子 2.2 加载常见的数据集 三.总结 四.transforms变换讲解 五.DataLoader的补充 总结 前言 在用Pytorch加载数据集时,看GitHub上的代码经常会用到ImageFolder.DataLo
-
TensorFlow加载模型时出错的解决方式
当发现目录时出错如下: \windows\tensorflow\core\framework\op_kernel.cc:993] Not found: Unsuccessful TensorSliceReader constructor: Failed to find any matching files for params_cifar.ckpt 在Windows下要把目录写对才可以. 比如 default='tmp' 要写成这样 default='./tmp' 这样TF就找到相应的目录了.
-
Python如何加载模型并查看网络
目录 加载模型并查看网络 打开终端 神经网络_模型的保存,模型的加载 模型的保存(torch.save) 模型的加载(torch.load) 加载模型并查看网络 加载模型,以vgg19为例. 打开终端 > python Python 3.7.2 (tags/v3.7.2:9a3ffc0492, Dec 23 2018, 23:09:28) [MSC v.1916 64 bit (AMD64)] on win32 Type "help", "copyright"
-
Tensorflow加载模型实现图像分类识别流程详解
目录 前言 正文 VGG19网络介绍 总结 前言 深度学习框架在市面上有很多.比如Theano.Caffe.CNTK.MXnet .Tensorflow等.今天讲解的就是主角Tensorflow.Tensorflow的前身是Google大脑项目的一个分布式机器学习训练框架,它是一个十分基础且集成度很高的系统,它的目标就是为研究超大型规模的视觉项目,后面延申到各个领域.Tensorflow 在2015年正式开源,开源的一个月内就收获到1w多的starts,这足以说明Tensorflow的优越性以及
-
python机器学习pytorch自定义数据加载器
目录 正文 1. 加载数据集 2. 迭代和可视化数据集 3.创建自定义数据集 3.1 __init__ 3.2 __len__ 3.3 __getitem__ 4. 使用 DataLoaders 为训练准备数据 5.遍历 DataLoader 正文 处理数据样本的代码可能会逐渐变得混乱且难以维护:理想情况下,我们希望我们的数据集代码与我们的模型训练代码分离,以获得更好的可读性和模块化.PyTorch 提供了两个数据原语:torch.utils.data.DataLoader和torch.util
-
pytorch 自定义数据集加载方法
pytorch 官网给出的例子中都是使用了已经定义好的特殊数据集接口来加载数据,而且其使用的数据都是官方给出的数据.如果我们有自己收集的数据集,如何用来训练网络呢?此时需要我们自己定义好数据处理接口.幸运的是pytroch给出了一个数据集接口类(torch.utils.data.Dataset),可以方便我们继承并实现自己的数据集接口. torch.utils.data torch的这个文件包含了一些关于数据集处理的类. class torch.utils.data.Dataset: 一个抽象类
-
TensorFlow获取加载模型中的全部张量名称代码
核心代码如下: [tensor.name for tensor in tf.get_default_graph().as_graph_def().node] 实例代码:(加载了Inceptino_v3的模型,并获取该模型所有节点的名称) # -*- coding: utf-8 -*- import tensorflow as tf import os model_dir = 'C:/Inception_v3' model_name = 'output_graph.pb' # 读取并创建一个图gr
-
Tensorflow之MNIST CNN实现并保存、加载模型
本文实例为大家分享了Tensorflow之MNIST CNN实现并保存.加载模型的具体代码,供大家参考,具体内容如下 废话不说,直接上代码 # TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import numpy as np import matplotlib.pyplot as plt import os #download the data mn
随机推荐
- js原型继承的两种方法对比介绍
- cmd findstr 字符串查找增强使用说明
- Android控件之GridView用法实例分析
- CodeIgniter框架数据库事务处理的设计缺陷和解决方案
- JavaScript中的普通函数与构造函数比较
- python实现二分查找算法
- 简单实现js上传文件功能
- MySql修改密码后phpMyAdmin无法登陆的解决方法
- javascript中apply/call和bind的使用
- 详细讲解Java中的main()方法
- Android源码中final关键字的用法及final,finally,finalize的区别
- Python获取当前函数名称方法实例分享
- Js经典案例的实例代码
- 详解JavaScript的变量
- Android LineChart绘制多条曲线的方法
- jQuery实现判断滚动条滚动到document底部的方法分析
- CentOS安装配置MySQL8.0的步骤详解
- vue组件详解之使用slot分发内容
- 浅谈Angular7 项目开发总结
- JavaScript引用类型RegExp基本用法详解