python的random模块及加权随机算法的python实现方法

random是用于生成随机数的,我们可以利用它随机生成数字或者选择字符串。

•random.seed(x)改变随机数生成器的种子seed。

一般不必特别去设定seed,Python会自动选择seed。

•random.random()    用于生成一个随机浮点数n,0 <= n < 1

•random.uniform(a,b)    用于生成一个指定范围内的随机浮点数,生成的随机整数a<=n<=b;

•random.randint(a,b)    用于生成一个指定范围内的整数,a为下限,b为上限,生成的随机整数a<=n<=b;若a=b,则n=a;若a>b,报错

•random.randrange([start], stop [,step])    从指定范围[start,stop)内,按指定基数递增的集合中获取一个随机数,基数缺省值为1

•random.choice(sequence)    从序列中获取一个随机元素,参数sequence表示一个有序类型,并不是一种特定类型,泛指list,tuple,字符串等

•random.shuffle(x[,random])    用于将一个列表中的元素打乱 (洗牌),会改变原始列表

•random.sample(sequence,k)    从指定序列中随机获取k个元素作为一个片段返回,不会改变原有序列

那么现在基础知识有了,我们来实现一个加权随机算法:

加权随机算法一般应用在以下场景:有一个集合S,里面比如有A,B,C,D这四项。这时我们想随机从中抽取一项,但是抽取的概率不同,比如我们希望抽到A的概率是50%,抽到B和C的概率是20%,D的概率是10%。一般来说,我们可以给各项附一个权重,抽取的概率正比于这个权重。那么上述集合就成了:

{A:5,B:2,C:2,D:1}

方法一:

最简单的方法可以这样:

把序列按权重值扩展成:lists=[A,A,A,A,A,B,B,C,C,D],然后random.choice(lists)随机选一个就行。虽然这样选取的时间复杂度是O(1),但是数据量一大,空间消耗就太大了。

# coding:utf-8
import random

def weight_choice(list, weight):
  """
  :param list: 待选取序列
  :param weight: list对应的权重序列
  :return:选取的值
  """
  new_list = []
  for i, val in enumerate(list):
    new_list.extend(val * weight[i])
  return random.choice(new_list)

if __name__ == "__main__":
  print(weight_choice(['A', 'B', 'C', 'D'], [5, 2, 2, 1]))

方法二:

比较常用的方法是这样:

计算权重总和sum,然后在1到sum之间随机选择一个数R,之后遍历整个集合,统计遍历的项的权重之和,如果大于等于R,就停止遍历,选择遇到的项。

还是以上面的集合为例,sum等于10,如果随机到1-5,则会在遍历第一个数字的时候就退出遍历。符合所选取的概率。

选取的时候要遍历集合,它的时间复杂度是O(n)。

# coding:utf-8
import random

list = ['A', 'B', 'C', 'D']

def weight_choice(weight):
  """
  :param weight: list对应的权重序列
  :return:选取的值在原列表里的索引
  """
  t = random.randint(0, sum(weight) - 1)
  for i, val in enumerate(weight):
    t -= val
    if t < 0:
      return i

if __name__ == "__main__":
  print(list[weight_choice([5, 2, 2, 1])])

方法三:

可以先对原始序列按照权重排序。这样遍历的时候,概率高的项可以很快遇到,减少遍历的项。(因为rnd递减的速度最快(先减去最大的数))

比较{A:5,B:2,C:2,D:1}和{B:2,C:2,A:5,D:1}

前者遍历步数的期望是5/10*1+2/10*2+2/10*3+1/10*4=19/10而后者是2/10*1+2/10*2+5/10*3+1/10*4=25/10。

这样提高了平均选取速度,但是原序列排序也需要时间。

先搞一个权重值的前缀和序列,然后在生成一个随机数t后,可以用二分法来从这个前缀和序列里找,那么选取的时间复杂度就是O(logn)了。

# coding:utf-8
import random
import bisect

list = ['A', 'B', 'C', 'D']

def weight_choice(weight):
  """
  :param weight: list对应的权重序列
  :return:选取的值在原列表里的索引
  """
  weight_sum = []
  sum = 0
  for a in weight:
    sum += a
    weight_sum.append(sum)
  t = random.randint(0, sum - 1)
  return bisect.bisect_right(weight_sum, t)

if __name__ == "__main__":
  print(list[weight_choice([5, 2, 2, 1])])

以上这篇python的random模块及加权随机算法的python实现方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python random模块常用方法

    复制代码 代码如下: import random print random.random() 获取一个小于1的浮点数 复制代码 代码如下: import random random.randint(1,10) 获取一个从1到10的整数 复制代码 代码如下: import random print random.uniform(0,2) 获取一个大于0小于2的浮点数 复制代码 代码如下: import random print random.randrange(1,10,4) 获取一个从1到10步

  • python中随机函数random用法实例

    本文实例讲述了python中随机函数random用法.分享给大家供大家参考.具体如下: python中的random模块功能非常强大,可以生成各种随机值 #! python # random import random print random.choice(['apple', 'pear', 'banana']) #从数组中随机选择一个元素 print random.sample(xrange(100), 10) # sampling without replacement print ran

  • Python中random模块用法实例分析

    本文实例讲述了Python中random模块用法.分享给大家供大家参考.具体如下: import random x = random.randint(1,4); y = random.choice(['appale','banana','cherry','durian']); print(x,y); 运行结果如下: (2, 'cherry') 不管学哪个语言,我总喜欢弄个随机数玩玩.农历十一月初六,Let's Python!!! l=[ ] while True: name=input("请输入

  • Python随机生成数模块random使用实例

    代码 复制代码 代码如下: #!/usr/bin/env python #coding=utf-8 import random #生成[0, 1)直接随机浮点数 print random.random() #[x, y]中的随机整数 print random.randint(1, 100) list = [1, 2, 3, 4, 5] #随机选取 print random.choice(list) #随机打乱 random.shuffle(list) print list 输出 复制代码 代码如

  • Python随机数random模块使用指南

    random 模块是Python自带的模块,除了生成最简单的随机数以外,还有很多功能. random.random() 用来生成一个0~1之间的随机浮点数,范围[0,10 >>> import random >>> random.random() 0.5038461831828231 random.uniform(a,b) 返回a,b之间的随机浮点数,范围[a,b]或[a,b),取决于四舍五入,a不一定要比b小. >>> random.uniform(

  • Python random模块(获取随机数)常用方法和使用例子

    random.randomrandom.random()用于生成一个0到1的随机符点数: 0 <= n < 1.0 random.uniformrandom.uniform(a, b),用于生成一个指定范围内的随机符点数,两个参数其中一个是上限,一个是下限.如果a > b,则生成的随机数n: a <= n <= b.如果 a <b, 则 b <= n <= a 复制代码 代码如下: print random.uniform(10, 20)print rand

  • Python中random模块生成随机数详解

    Python中的random模块用于生成随机数.下面介绍一下random模块中最常用的几个函数. random.random random.random()用于生成一个0到1的随机符点数: 0 <= n < 1.0 random.uniform random.uniform的函数原型为:random.uniform(a, b),用于生成一个指定范围内的随机符点数,两个参数其中一个是上限,一个是下限.如果a > b,则生成的随机数n: a <= n <= b.如果 a <

  • python的random模块及加权随机算法的python实现方法

    random是用于生成随机数的,我们可以利用它随机生成数字或者选择字符串. •random.seed(x)改变随机数生成器的种子seed. 一般不必特别去设定seed,Python会自动选择seed. •random.random()    用于生成一个随机浮点数n,0 <= n < 1 •random.uniform(a,b)    用于生成一个指定范围内的随机浮点数,生成的随机整数a<=n<=b; •random.randint(a,b)    用于生成一个指定范围内的整数,a

  • 你真的了解Python的random模块吗?

    random模块 用于生成伪随机数 源码位置: Lib/random.py(看看就好,千万别随便修改) 真正意义上的随机数(或者随机事件)在某次产生过程中是按照实验过程中表现的分布概率随机产生的,其结果是不可预测的,是不可见的.而计算机中的随机函数是按照一定算法模拟产生的,其结果是确定的,是可见的.我们可以这样认为这个可预见的结果其出现的概率是100%.所以用计算机随机函数所产生的"随机数"并不随机,是伪随机数. 计算机的伪随机数是由随机种子根据一定的计算方法计算出来的数值.所以,只要

  • Python使用random模块生成随机数操作实例详解

    本文实例讲述了Python使用random模块生成随机数操作.分享给大家供大家参考,具体如下: 今天在用Python编写一个小程序时,要用到随机数,于是就在网上查了一下关于Python生成各种随机数的方法,现将其总结如下: 此处,利用Python中的random模块生成随机数.因此首先必须导入该模块:import random 一. 随机产生一个元素 import random #生成一个0到1的随机浮点数: 0 <= n < 1.0 print(random.random()) >&g

  • 详解Python基础random模块随机数的生成

    随机数参与的应用场景大家一定不会陌生,比如密码加盐时会在原密码上关联一串随机数,蒙特卡洛算法会通过随机数采样等等.Python内置的random模块提供了生成随机数的方法,使用这些方法时需要导入random模块. import random 下面介绍下Python内置的random模块的几种生成随机数的方法. 1.random.random() 随机生成 0 到 1 之间的浮点数[0.0, 1.0) . print("random: ", random.random()) #rando

  • Python中random模块常用方法的使用教程

    前言 Python 的random模块包含许多随机数生成器. random是Python标准库之一,直接导入即可使用.本文介绍random中常用方法的用法. 一.生成随机的整数 # coding=utf-8 import random print(random.randint(1, 5)) print(random.randrange(0, 51, 5)) 运行结果: 3 40 randint(start, end)会返回一个start到end之间的整数,这里是左闭右闭区间.也就是说可能会返回e

  • python中random模块详解

    Python中的random模块用于生成随机数,它提供了很多函数.常用函数总结如下: 1. random.random() 用于生成一个0到1的随机浮点数: 0 <= n < 1.0 2. random.seed(n) 用于设定种子值,其中的n可以是任意数字.random.random() 生成随机数时,每一次生成的数都是随机的.但是,使用 random.seed(n) 设定好种子之后,在先调用seed(n)时,使用 random() 生成的随机数将会是同一个. 3. random.unifo

  • Python使用random模块实现掷骰子游戏的示例代码

    引入内容 根据人民邮电出版社出版的<Python程序设计现代设计方法>P102习题中的第7题--掷骰子游戏,进行代码编写. 题目要求 一盘游戏中,两人轮流掷骰子5次,并将每次掷出的点数累加,5局之后,累计点数较大者获胜,点数相同则为平局.根据此规则实现掷骰子游戏,并算出50盘之后的胜利者( 50盘中嬴得盘数最多的,即最终胜利者). 审题: 共有50盘游戏.一盘游戏有5局,每一局双方各掷骰子一次,5局结束以后统计分数,分数高的一方获胜.至此,一盘游戏结束.50盘游戏结束后,赢得盘数最多的一方为最

  • Python基于csv模块实现读取与写入csv数据的方法

    本文实例讲述了Python基于csv模块实现读取与写入csv数据的方法.分享给大家供大家参考,具体如下: 通过csv模块可以轻松读取格式为csv的文件,而且csv模块是python内置的,不需要下载就可以直接用. 一.准备csv文件 文件名是 e:\t.csv,文件内容: org_id,org_name,state,emp_id 1,销售1,'1',123 2,销售2,'0',321 3,销售3,'1',231 1,,'1',1234 二.读取csv数据 代码非常简单: # -*- coding

  • Python基于whois模块简单识别网站域名及所有者的方法

    本文实例讲述了Python基于whois模块简单识别网站域名及所有者的方法.分享给大家供大家参考,具体如下: 对于一些网站,我们可能会关心其所有者是谁.为了找到网站的所有者,我们可以使用WHOIS协议查询域名的注册者是谁.Python中有一个对该协议的封装库.我们可以通过pip进行安装. pip install python-whois 补充:本机安装了Python2与Python3两个版本,这里就使用了pip2安装python-whois模块,如下图所示: 本机Python3环境下适用pip3

随机推荐