Python+Scipy实现自定义任意的概率分布

目录
  • 连续变量分布
  • 离散变量分布
  • 二项分布Binomial Distribution
  • 几何分布Geometric Distribution
  • 泊松分布Poisson Distribution

Scipy自带了多种常见的分布,如正态分布、均匀分布、二项分布、多项分布、伽马分布等等,还可以自定义任意的概率分布。本文将介绍如何利用Scipy自定义任意的概率分布。

连续变量分布

考虑连续变量x满足如下概率密度分布函数:

其在实数域积分为1。我们可以通过scipy.stats中的rv_continuous类去实现这个分布,代码如下:

from scipy.stats import rv_continuous
import matplotlib.pyplot as plt
import numpy as np
class MyDistribution(rv_continuous):
    def _pdf(self, x):#概率密度分布函数
        return 2*sqrt(0.1)*exp(-0.1*x**2)*cos(x)**2/(sqrt(pi)*(exp(-10) + 1))
distribution = MyDistribution()
xlist=np.linspace(-8,8,300)
ylist=distribution.pdf(xlist)
samples=distribution.rvs(size=200);#取200次样

fig,ax=plt.subplots(figsize=(8,6))
ax.plot(xlist,ylist,lw=3,color='red',label="$\mathrm{ideal}$");
ax.hist(samples,color='blue',density=True, bins=np.arange(-8,8,0.25), histtype='barstacked', rwidth=0.9,label=r"$\mathrm{samples}$")
ax.legend(fontsize=20);
ax.set_xlabel(r"$x$",size=25)
ax.set_ylabel(r"$\mathrm{PDF}$",size=20)
ax.set_xlim(-8,8);
ax.tick_params(axis='both',direction='in',width=1.3,length=3,top=1,right=1,labelsize=20,pad=2)
fig.tight_layout();
fig.show();

运行结果如下:

增加采样次数,分布直方图逐渐趋于理想的概率分布函数P(x)。

离散变量分布

考虑连续变量x满足泊松分布,则可以用scipy.stats中的rv_discrete类去实现这个分布,代码如下:

from scipy.stats import rv_discrete
import matplotlib.pyplot as plt
import numpy as np
from scipy.special import factorial
class MyDistribution(rv_discrete):
    def _pmf(self, k, mu):
        return exp(-mu)*mu**k/factorial(k)
distribution = MyDistribution()
mu=2
samples=distribution.rvs(size=500,mu=mu);#取500次样
klist = np.arange(0,10,1)
plist = distribution.pmf(klist,mu)
fig, ax = plt.subplots()
ax.plot(klist, plist, 'ro', ms=12, mec='r',label="$\mathrm{ideal}$");
ax.hist(samples,color='blue',density=True, bins=klist, histtype='barstacked', rwidth=0.8,label=r"$\mathrm{samples}$",align="left")
ax.legend(fontsize=20);
fig.show();

运行结果如下:

可以修改上述MyDistribution类中的pmf函数,实现任意想要的离散分布。

二项分布Binomial Distribution

是n个独立的成功/失败试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当n=1时,二项分布就是伯努利分布。

'''1、定义随机变量'''
# 比如5次掷硬币实验,正面朝上的次数
n2=5
x2=np.arange(1,n2+1,1)
x2
array([1, 2, 3, 4, 5])
'''2、求对应的概率质量函数 (PMF)'''
p2=0.5
pList2=stats.binom.pmf(x2,n2,p2)
# 返回一个列表,列表中每个元素表示随机变量中对应值的概率
pList2
array([0.15625, 0.3125 , 0.3125 , 0.15625, 0.03125])
'''3、绘图'''
fig=plt.figure()
# plot在此的作用为显示两个标记点
plt.plot(x2,pList2,marker='o',linestyle='None')
'''
vlines用于绘制竖直线(vertical lines),
参数说明:vline(x坐标值, y坐标最小值, y坐标值最大值)
'''
plt.vlines(x2, 0, pList2)
plt.xlabel('随机变量:抛硬币5次')
plt.ylabel('概率')
plt.title('二项分布:n=%d,p2=%0.2f' % (n2,p2))
plt.show()

几何分布Geometric Distribution

在n次伯努利试验中,试验k次才得到第一次成功的机率。详细地说,是:前k-1次皆失败,第k次成功的概率。几何分布是帕斯卡分布当r=1时的特例。

'''1、定义随机变量'''
# 比如射箭1次中靶的概率为90%,射5次箭
k=5
x3=np.arange(1,k+1,1)
x3
array([1, 2, 3, 4, 5])
'''2、求对应的概率质量函数 (PMF)'''
p3=0.7
pList3=stats.geom.pmf(x3,p3)
# 返回一个列表,表示在第i次射击中,第一次射中的概率
pList3
array([0.7    , 0.21   , 0.063  , 0.0189 , 0.00567])
'''3、绘图'''
fig=plt.figure()
# plot在此的作用为显示两个标记点
plt.plot(x3,pList3,marker='o',linestyle='None')
'''
vlines用于绘制竖直线(vertical lines),
参数说明:vline(x坐标值, y坐标最小值, y坐标值最大值)
'''
plt.vlines(x3, 0, pList3)
plt.xlabel('随机变量:射击5次')
plt.ylabel('概率')
plt.title('几何分布:n=%d,p=%0.2f' % (k,p3))
plt.show()

泊松分布Poisson Distribution

描述在某单位时间内,事件发生n次的概率

'''1、定义随机变量'''
# 某机器每季度发生故障平均为1次,那么在一年中机器发生10次的概率为
mu=4 # 平均值
k=10 # 要求发生10次的概率
x4=np.arange(1,k+1,1)
x4
array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])
'''2、求对应的概率质量函数 (PMF)'''
pList4=stats.poisson.pmf(x4,mu) # 一年的平均值为4
# 返回一个列表,表示1年中发生i次故障的概率
pList4
array([0.07326256, 0.14652511, 0.19536681, 0.19536681, 0.15629345,
       0.10419563, 0.05954036, 0.02977018, 0.01323119, 0.00529248])
'''3、绘图'''
fig=plt.figure()
# plot在此的作用为显示两个标记点
plt.plot(x4,pList4,marker='o',linestyle='None')
'''
vlines用于绘制竖直线(vertical lines),
参数说明:vline(x坐标值, y坐标最小值, y坐标值最大值)
'''
plt.vlines(x4, 0, pList4)
plt.xlabel('随机变量:发生k次故障')
plt.ylabel('概率')
plt.title('泊松分布:n=%d' % k)
plt.show()

到此这篇关于Python+Scipy实现自定义任意的概率分布的文章就介绍到这了,更多相关Python Scipy概率分布内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python的scipy.stats模块中正态分布常用函数总结

    python的scipy.stats模块是连续型随机变量的公共方法,可以产生随机数,通常是以正态分布作为scipy.stats的基本使用方法.本文介绍正态分布的两种常用函数:1.累积概率密度函数stats.norm.cdf(α,均值,方差):2.概率密度函数stats.norm.pdf(α,均值,方差). 1.stats.norm.cdf(α,均值,方差):累积概率密度函数 使用格式 status.norm.cdf(Norm) # 相当于已知正态分布函数曲线和x值,求函数x点左侧积分 使用实例

  • python scipy 稀疏矩阵的使用说明

    稀疏矩阵格式 coo_matrix coo_matrix 是最简单的稀疏矩阵存储方式,采用三元组(row, col, data)(或称为ijv format)的形式来存储矩阵中非零元素的信息. 在实际使用中,一般coo_matrix用来创建矩阵,因为coo_matrix无法对矩阵的元素进行增删改操作:创建成功之后可以转化成其他格式的稀疏矩阵(如csr_matrix.csc_matrix)进行转置.矩阵乘法等操作. coo_matrix可以通过四种方式实例化,除了可以通过coo_matrix(D)

  • python使用pip安装SciPy、SymPy、matplotlib教程

    背景: 使用pip install SciPy的格式安装python函数库SciPy的时候,发现老是报错,从网上找信息也没找到合适的解决办法,最后使用whl格式文件安装成功. 过程: 本人事先电脑安装了python3.5.2,电脑是64位的. 下载函数库:从网址http://www.lfd.uci.edu/~gohlke/pythonlibs/下载对应函数库的whl文件.注意下载对应的python版本和windows版本的whl文件,这里讲一下文件的规则:scipy‑0.19.1‑cp35‑cp

  • python的scipy实现插值的示例代码

    插值对于一些时间序列的问题可能比较有用. Show the code directly: import numpy as np from matplotlib import pyplot as plt from scipy.interpolate import interp1d x=np.linspace(0,10*np.pi,num=20) y=np.sin(x) f1=interp1d(x,y,kind='linear')#线性插值 f2=interp1d(x,y,kind='cubic')

  • python科学计算之scipy——optimize用法

    写在前面 SciPy的optimize模块提供了许多数值优化算法,下面对其中的一些记录. 非线性方程组求解 SciPy中对非线性方程组求解是fslove()函数,它的调用形式一般为fslove(fun, x0),fun是计算非线性方程组的误差函数,它需要一个参数x,fun依靠x来计算线性方程组的每个方程的值(或者叫误差),x0是x的一个初始值. """ 计算非线性方程组: 5x1+3 = 0 4x0^2-2sin(x1x2)=0 x1x2-1.5=0 ""

  • 深入浅析Python科学计算库Scipy及安装步骤

    一.Scipy 入门 1.1.Scipy 简介及安装 官网:http://www.scipy.org/SciPy 安装:在C:\Python27\Scripts下打开cmd执行: 执行:pip install scipy 1.2.安装Anaconda及环境搭建(举例演示) 创建环境:conda create -n env_name python=3.6 示例:   conda create -n Py_36 python=3.6  #创建名为Py_367的环境 列出所有环境:conda info

  • Python+Scipy实现自定义任意的概率分布

    目录 连续变量分布 离散变量分布 二项分布Binomial Distribution 几何分布Geometric Distribution 泊松分布Poisson Distribution Scipy自带了多种常见的分布,如正态分布.均匀分布.二项分布.多项分布.伽马分布等等,还可以自定义任意的概率分布.本文将介绍如何利用Scipy自定义任意的概率分布. 连续变量分布 考虑连续变量x满足如下概率密度分布函数: 其在实数域积分为1.我们可以通过scipy.stats中的rv_continuous类

  • Python中如何自定义函数

    目录 Python自定义函数 自定义函数的语法 自定义函数的实现 自定义函数的调用 Python自定义函数基础概念 函数定义语法 函数文档字符串 函数定义规则 形参定义方式 函数调用 函数调用时参数的传递形式 全局变量与局部变量 函数的功能性 函数式编程 函数的 可重入性(结果唯一性) 总结 Python自定义函数 在Python编程中,可以使用已经定义好的函数,也可以自定义函数实现某些特殊的功能. 自定义函数的语法 在Python中,自定义函数的语法如下所示 def 函数名(参数):   函数

  • python引入导入自定义模块和外部文件的实例

    项目中想使用以前的代码,或者什么样的需求致使你需要导入外部的包 如果是web 下,比如说django ,那么你新建一个app,把你需要导入的说用东东,都写到这个app中,然后在setting中的app也配上基本就ok了 如果是本地代码,可以有几种方式, 1.这种最简单,也可能最不实用,将你的外部文件放到跟需要调用外部文件的文件同一个包下,同一目录 folder ------toinvoke.py ------tobeinvoded.py 这样在toinvoke.py 中引入 import tov

  • python魔法方法-自定义序列详解

    自定义序列的相关魔法方法允许我们自己创建的类拥有序列的特性,让其使用起来就像 python 的内置序列(dict,tuple,list,string等). 如果要实现这个功能,就要遵循 python 的相关的协议.所谓的协议就是一些约定内容.例如,如果要将一个类要实现迭代,就必须实现两个魔法方法:__iter__.next(python3.x中为__new__).__iter__应该返回一个对象,这个对象必须实现 next 方法,通常返回的是 self 本身.而 next 方法必须在每次调用的时

  • Python HTTP客户端自定义Cookie实现实例

    Python HTTP客户端自定义Cookie实现实例 几乎所有脚本语言都提供了方便的 HTTP 客户端处理的功能,Python 也不例外,使用 urllib 和 urllib2 可以很方便地进行 HTTP GET 和 POST 等各种操作.并且还允许以类似于插件的形式加入一些 handler ,来定制 request 和 response ,比如代理的支持和 cookie 的支持都是这样添加进来的.具体来说,通过如下方式构造一个 opener : opener = urllib2.build_

  • Python探索之自定义实现线程池

    为什么需要线程池呢? 设想一下,如果我们使用有任务就开启一个子线程处理,处理完成后,销毁子线程或等得子线程自然死亡,那么如果我们的任务所需时间比较短,但是任务数量比较多,那么更多的时间是花在线程的创建和结束上面,效率肯定就低了.     线程池的原理: 既然是线程池(Thread pool),其实名字很形象,就是把指定数量的可用子线程放进一个"池里",有任务时取出一个线程执行,任务执行完后,并不立即销毁线程,而是放进线程池中,等待接收下一个任务.这样内存和cpu的开销也比较小,并且我们

  • 实现python版本的按任意键继续/退出

    某天在群内有同学问到,在python下我用input或者raw_input都得输入完后回车才能获取到输入的值,那如何实现任意键退出暂停等功能呢,我当时也没有多想,因为接触python时间也不算长,主要还是Linux下的. 要实现该功能,需要的就是暂停程序.等待并捕捉用户的一个键盘输入,然后继续执行.Python 有内建的库能帮我们实现该功能,不过要区别对待 Windows 和 Linux. 当然,Windows系统下会稍微简单一些,Windows系统下如果你安装了python的环境,默认自带的一

  • Python实现可自定义大小的截屏功能

    本文实例讲述了Python实现可自定义大小的截屏功能.分享给大家供大家参考,具体如下: 蝈蝈这两天正忙着收拾家当去公司报道,结果做PHP的发小蛐蛐找到了他,说是想要一个可以截图工具. 大致需要做出这样的效果. 虽然已经很久不写Python代码了,但是没办法,盛情难却啊,只好硬着头皮上了. 关于这个需求,蝈蝈想了想,脑海里大概有这么几个实现的方式. ① 调用QQ的截图工具. ② 自己写一个. 这第一个嘛,应了那句老话.理想很丰满,现实很骨感.因为被集成的缘故,剖不出来是没办法用的,自认为技术还不到

  • Python实现的自定义多线程多进程类示例

    本文实例讲述了Python实现的自定义多线程多进程类.分享给大家供大家参考,具体如下: 最近经常使用到对大量文件进行操作的程序以前每次写的时候都要在函数中再写一个多线程多进程的函数,做了些重复的工作遇到新的任务时还要重写,因此将多线程与多进程的一些简单功能写成一个类,方便使用.功能简单只为以后方便使用. 使用中发现bug会再进行更新 #!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017/5/10 12:47 # @Author

  • 在Python函数中输入任意数量参数的实例

    有时候,预先不知道函数需要接受多少个实参,好在Python允许函数从调用语句中调用语句中收集任意数量的实参.在参数前加上*号. 来看一个制作披萨的函数,它需要接受很多配料,但你无法预先确定顾客要多少种配料.下面的函数只有一个形参*toppings,但不管调用语句提供了多少实参,这个形参都将他们统统收入囊中: def make_pizza(*toppings): """打印顾客点的所有配料""" print(toppings) make_pizza

随机推荐