详解如何在ChatGPT内构建一个Python解释器
目录
- 下面是初始化ChatGPT的命令:
- 总结
引用:Art Kulakov 《How to Build a Python Interpreter Inside ChatGPT》
这个灵感来自于一个类似的故事,在ChatGPT里面建立一个虚拟机(Building A Virtual Machine inside ChatGPT)。给我留下了深刻的印象,并决定尝试类似的东西,但这次不是用Linux命令行工具,而是让ChatGPT成为我们的Python解释器。
下面是初始化ChatGPT的命令:
我想让你充当Python解释器。我将输入命令,你将用python解释器输出。我希望你只回答终端输出中的一个独特的代码块,而不是其他。不要写解释,只输出python输出的内容。不要输入命令,除非我指示你这样做。当我需要用英语告诉你一些事情的时候,我会通过把文本放在大括号里,就像这样:{示例文本}。我的第一个命令是 a=1。
从上图不能看出效果很好,让我们试试一些简单的算术表达式。
又成功了;如果我们使用一个没有导入的库,会发生什么?
虽然它决定帮我解决一个错误。其实我不希望它这样做,所以我再次要求它不要输出任何东西,除了python代码。
{只打印python输出,不打印任何注释}。
顺便说一下,ChatGPT有时能够使用没有导入的库,但这次我很幸运,它打印出了错误信息。很显然我很确定ChatGPT能够完成简单的任务,让我们试试更复杂的东西,让它输出二进制搜索算法的结果。
# Binary Search in python def binarySearch(array, x, low, high): # Repeat until the pointers low and high meet each other while low <= high: mid = low + (high - low)//2 if array[mid] == x: return mid elif array[mid] < x: low = mid + 1 else: high = mid - 1 return -1 array = [3, 4, 5, 6, 7, 8, 9] x = 4 result = binarySearch(array, x, 0, len(array)-1) if result != -1: print("Element is present at index " + str(result)) else: print("Not found")
似乎它不想听我的请求,只听python的输出,但输出还是正确的,令人印象深刻!让我们试着输入一个不存在的数字,比如:
x = 4.5
好吧,似乎它猜中了这一个!让我们跳到更复杂的东西。让我们从一些简单的机器学习算法开始,比如线性回归。我想知道ChatGPT是否有能力解决一个简单的优化任务...
import numpy as np import matplotlib.pyplot as plt def estimate_coef(x, y): # number of observations/points n = np.size(x) # mean of x and y vector m_x = np.mean(x) m_y = np.mean(y) # calculating cross-deviation and deviation about x SS_xy = np.sum(y*x) - n*m_y*m_x SS_xx = np.sum(x*x) - n*m_x*m_x # calculating regression coefficients b_1 = SS_xy / SS_xx b_0 = m_y - b_1*m_x return (b_0, b_1) def plot_regression_line(x, y, b): # plotting the actual points as scatter plot plt.scatter(x, y, color = "m", marker = "o", s = 30) # predicted response vector y_pred = b[0] + b[1]*x # plotting the regression line plt.plot(x, y_pred, color = "g") # putting labels plt.xlabel('x') plt.ylabel('y') # function to show plot plt.show() def main(): # observations / data x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) y = np.array([1, 3, 2, 5, 7, 8, 8, 9, 10, 12]) # estimating coefficients b = estimate_coef(x, y) print("Estimated coefficients:\nb_0 = {} \ \nb_1 = {}".format(b[0], b[1])) # plotting regression line # plot_regression_line(x, y, b) if __name__ == "__main__": main()
这项优化任务的正确答案是:
Estimated coefficients:
b_0 = 1.2363636363636363
b_1 = 1.1696969696969697
下面是ChatGPT的输出结果:
这与真实结果很接近! 如果我们在真正的python中绘制预测图,我们将得到以下图表:
关于这个任务的另一个有意思的点:我又运行了一次同样的命令,当时的输出结果与真实结果完全吻合。因此,我们可以认为ChatGPT通过了这个任务。
好了,现在是时候做一些简单的神经网络的事情了!也许我们可以装一个简单的Keras模型。也许我们可以装一个简单的Keras模型?
# first neural network with keras make predictions from numpy import loadtxt from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense # load the dataset dataset = loadtxt('pima-indians-diabetes.csv', delimiter=',') # split into input (X) and output (y) variables X = dataset[:,0:8] y = dataset[:,8] # define the keras model model = Sequential() model.add(Dense(12, input_shape=(8,), activation='relu')) model.add(Dense(8, activation='relu')) model.add(Dense(1, activation='sigmoid')) # compile the keras model model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # fit the keras model on the dataset model.fit(X, y, epochs=150, batch_size=10, verbose=0) # make class predictions with the model predictions = (model.predict(X) > 0.5).astype(int) # summarize the first 5 cases for i in range(5): print('%s => %d (expected %d)' % (X[i].tolist(), predictions[i], y[i]))
注意,数据集实际上是一个CSV文件,ChatGPT没有权限访问这个文件...
好吧,这是正确的输出,而我很害怕。如果我把网络的结构改成一个不正确的结构,会发生什么?让我们改变一下输入的shape。
model.add(Dense(12, input_shape=(6,), activation='relu'))
看来我在失去工作之前还有几年时间;这次ChatGPT没有理解这个技巧,仍然打印了输出。让我们做最后一项任务--在OpenAI里面调用Huggingface怎么样?
正确的输出:
[{'entity_group': 'ORG', 'score': 0.9472818374633789, 'word': 'Apple', 'start': 0, 'end': 5}, {'entity_group': 'PER', 'score': 0.9838564991950989, 'word': 'Steve Jobs', 'start': 74, 'end': 85}, {'entity_group': 'LOC', 'score': 0.9831605950991312, 'word': 'Los Altos', 'start': 87, 'end': 97}, {'entity_group': 'LOC', 'score': 0.9834540486335754, 'word': 'Californie', 'start': 100, 'end': 111}, {'entity_group': 'PER', 'score': 0.9841555754343668, 'word': 'Steve Jobs', 'start': 115, 'end': 126}, {'entity_group': 'PER', 'score': 0.9843501806259155, 'word': 'Steve Wozniak', 'start': 127, 'end': 141}, {'entity_group': 'PER', 'score': 0.9841533899307251, 'word': 'Ronald Wayne', 'start': 144, 'end': 157}, {'entity_group': 'ORG', 'score': 0.9468960364659628, 'word': 'Apple Computer', 'start': 243, 'end': 257}]
ChatGPT的输出结果:
[{'word': 'Apple', 'score': 0.9993804788589478, 'entity': 'I-ORG'}, {'word': 'Steve', 'score': 0.999255347251892, 'entity': 'I-PER'}, {'word': 'Jobs', 'score': 0.9993916153907776, 'entity': 'I-PER'}, {'word': 'Steve', 'score': 0.9993726613044739, 'entity': 'I-PER'}, {'word': 'Wozniak', 'score': 0.999698519744873, 'entity': 'I-PER'}, {'word': 'Ronald', 'score': 0.9995181679725647, 'entity': 'I-PER'}, {'word': 'Wayne14', 'score': 0.9874711670837402, 'entity': 'I-PER'}, {'word': 'Apple', 'score': 0.9974127411842163, 'entity': 'I-ORG'}, {'word': 'Computer', 'score': 0.968027651309967, 'entity': 'I-ORG'}, {'word': 'Apple', 'score': 0.8259692192077637, 'entity': 'I-ORG'}]
其结果与huggingface的输出结果很接近,但是不一致。我猜测是因为Huggingface的API改变了,由于ChatGPT没有在最新的历史数据上进行训练,所以它以旧的格式输出结果。
总结
在过去的几天里,我一直在玩ChatGPT,我被使用这个工具的无限可能性所吸引。虽然它不是一个真正的python解释器,但它在为我编译python代码方面仍然做得很好。我还发现,它能很好地解决Hard难度的 LEETCODE 代码问题。
最后再多说一句:ChatGPT,你将如何帮助人类?
如果你还没有尝试过ChatGPT,你一定要试试,因为它就是未来!
以上就是详解如何在ChatGPT内构建一个Python解释器的详细内容,更多关于ChatGPT构建Python解释器的资料请关注我们其它相关文章!