Python+Matplotlib实现绘制三维折线图

目录
  • 1.0简介
  • 2.0三维图画法与类型
    • 1、直线绘制(Line plots)
    • 2、散点绘制(Scatter plots)
    • 3、线框图(Wireframe plots)
    • 4、三角表面图(Tri-Surface plots)
    • 5.随机散点图

1.0简介

三维图像技术是现在国际最先进的计算机展示技术之一,任何普通电脑只需要安装一个插件,就可以在网络浏览器中呈现三维的产品,不但逼真,而且可以动态展示产品的组合过程,特别适合远程浏览。

立体图视觉上层次分明色彩鲜艳,具有很强的视觉冲击力,让观看的人驻景时间长,留下深刻的印象。立体图给人以真实、栩栩如生,人物呼之欲出,有身临其境的感觉,有很高的艺术欣赏价值。

今天我们就通过这篇文章来了解如何用python中的matplotlib库绘制漂亮的三位论文图吧!秀翻你的朋友!

2.0三维图画法与类型

首先要安装Matplotlib库可以使用pip:

pip install matplotlib

假设已经安装了matplotlib工具包。

利用matplotlib.figure.Figure创建一个图框:

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

1、直线绘制(Line plots)

基本用法:ax.plot(x,y,z,label=' ')

代码如下:

import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt

mpl.rcParams['legend.fontsize'] = 10

fig = plt.figure()
ax = fig.add_subplot(projection='3d')
theta = np.linspace(-4 * np.pi, 4 * np.pi, 100)
z = np.linspace(-2, 2, 100)
r = z ** 2 + 1
x = r * np.sin(theta)
y = r * np.cos(theta)
ax.plot(x, y, z, label='parametric curve')
ax.legend()

效果如下:

2、散点绘制(Scatter plots)

基本语法:

ax.scatter(xs, ys, zs, s=20, c=None, depthshade=True, *args, *kwargs)

代码大意为:

  • xs,ys,zs:输入数据;
  • s:scatter点的尺寸
  • c:颜色,如c = 'r’就是红色;
  • depthshase:透明化,True为透明,默认为True,False为不透明
  • *args等为扩展变量,如maker = ‘o’,则scatter结果为’o‘的形状

示例代码:

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np

def randrange(n, vmin, vmax):
    '''
    Helper function to make an array of random numbers having shape (n, )
    with each number distributed Uniform(vmin, vmax).
    '''
    return (vmax - vmin)*np.random.rand(n) + vmin

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

n = 100

# For each set of style and range settings, plot n random points in the box
# defined by x in [23, 32], y in [0, 100], z in [zlow, zhigh].
for c, m, zlow, zhigh in [('r', 'o', -50, -25), ('b', '^', -30, -5)]:
    xs = randrange(n, 23, 32)
    ys = randrange(n, 0, 100)
    zs = randrange(n, zlow, zhigh)
    ax.scatter(xs, ys, zs, c=c, marker=m)

ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')

plt.show()

效果:

3、线框图(Wireframe plots)

基本用法:ax.plot_wireframe(X, Y, Z, *args, **kwargs)

  • X,Y,Z:输入数据
  • rstride:行步长
  • cstride:列步长
  • rcount:行数上限
  • ccount:列数上限

示例代码:

from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.add_subplot(100, projection='3d')

# Grab some test data.
X, Y, Z = axes3d.get_test_data(0.12)

# Plot a basic wireframe.
ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)

plt.show()

有点丑。。。大家可以自行更改绘图数据,美化图像。

4、三角表面图(Tri-Surface plots)

基本用法:ax.plot_trisurf(*args, **kwargs)

ax.plot_trisurf(*args, **kwargs)

X,Y,Z:数据

其他参数类似surface-plot

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np

n_radii = 8
n_angles = 36

radii = np.linspace(0.125, 1.0, n_radii)
angles = np.linspace(0, 2*np.pi, n_angles, endpoint=False)

angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)

# points in the (x, y) plane.
x = np.append(0, (radii*np.cos(angles)).flatten())
y = np.append(0, (radii*np.sin(angles)).flatten())

z = np.sin(-x*y)

fig = plt.figure()
ax = fig.add_subplot(projection='3d')

ax.plot_trisurf(x, y, z, linewidth=0.2, antialiased=True)

plt.show()

运行效果图:

5.随机散点图

利用scatter生成随机散点图。

函数定义:

#函数定义
matplotlib.pyplot.scatter(x, y, 
    s=None,   #散点的大小 array  scalar
    c=None,   #颜色序列   array、sequency
    marker=None,   #点的样式
    cmap=None,    #colormap 颜色样式
    norm=None,    #归一化  归一化的颜色camp
    vmin=None, vmax=None,    #对应上面的归一化范围
     alpha=None,     #透明度
    linewidths=None,   #线宽
    verts=None,   #
    edgecolors=None,  #边缘颜色
    data=None, 
    **kwargs
    )

示例代码:

import numpy as np
import matplotlib.pyplot as plt
#定义坐标轴
fig4 = plt.figure()
ax4 = plt.axes(projection='3d')

#生成三维数据
xx = np.random.random(20)*10-5   #取100个随机数,范围在5~5之间
yy = np.random.random(20)*10-5
X, Y = np.meshgrid(xx, yy)
Z = np.sin(np.sqrt(X**2+Y**2))

#作图
ax4.scatter(X,Y,Z,alpha=0.3,c=np.random.random(400),s=np.random.randint(10,20,size=(20, 20)))     #生成散点.利用c控制颜色序列,s控制大小

plt.show()

效果:

到此这篇关于Python+Matplotlib实现绘制三维折线图的文章就介绍到这了,更多相关Python Matplotlib绘制三维折线图内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python数据分析之使用matplotlib绘制折线图、柱状图和柱线混合图

    目录 matplotlib介绍 matplotlib绘制折线图 matplotlib绘制柱状图 matplotlib绘制柱线混合图 总结 matplotlib介绍 Matplotlib 是 Python 的绘图库. 它可与 NumPy 一起使用,提供了一种有效的 MatLab 开源替代方案. 它也可以和图形工具包一起使用,如 PyQt 和 wxPython. 安装Matplotlib库命令:在cmd命令窗口输入pip install matplotlib. matplotlib绘制折线图 1.绘

  • python使用matplotlib绘制折线图

    前言: 我的python学习也告一段落了.不过有些,方法还是打算总结一下和大家分享.我整理了使用matplotlib绘制折线图的一般步骤,按照这个步骤走绘制折线图一般都没啥问题.其实用matplotlib库绘制折线图的过程,其实就是类似于数学上描点,连线绘制图形的过程.所有,这个过程就可以简单的规划为获取图像点信息,描点连线,设置图线格式这三个部分. matplotlib库的安装以及程序引用的说明: 我使用的编程软件为pycharm,我就说一下pycharm安装matplotlib库的方法吧.在

  • Python数据分析之 Matplotlib 折线图绘制

    目录 一.Matplotlib 绘图 简单示例 二.折线图绘制 一.Matplotlib 绘图 在数据分析中,数据可视化也非常重要,通过直观的展示过程.结果数据,可以帮助我们清晰的理解数据,进而更好的进行分析.接下来就说一下Python数据分析中的数据可视化工具 Matplotlib 库. Matplotlib 是一个非常强大的Python 2D绘图库,使用它,我们可以通过图表的形式更直观的展现数据,实现数据可视化,使用起来也非常方便,而且支持绘制折线图.柱状图.饼图.直方图.散点图等. 可以使

  • Python matplotlib之折线图的各种样式与画法总结

    目录 1. 折线形状 2. 数据点形状 3. 折线颜色 4. 添加网格 总结 上述图的完整代码如下: from numpy import * import numpy as np import pandas as pd import matplotlib.pyplot as plt import pylab as pl from mpl_toolkits.axes_grid1.inset_locator import inset_axes y1 = [0.92787363, 0.92436059

  • Python matplotlib实现折线图的绘制

    目录 一.版本 二.图表主题设置 三.一次函数 四.多个一次函数 五.填充折线图 官网: https://matplotlib.org 一.版本 # 01 matplotlib安装情况 import matplotlib matplotlib.__version__ 二.图表主题设置 请点击:图表主题设置 三.一次函数 import numpy as np from matplotlib import pyplot as plt # 如何使用中文标题 plt.rcParams['font.san

  • Python+Matplotlib实现绘制三维折线图

    目录 1.0简介 2.0三维图画法与类型 1.直线绘制(Line plots) 2.散点绘制(Scatter plots) 3.线框图(Wireframe plots) 4.三角表面图(Tri-Surface plots) 5.随机散点图 1.0简介 三维图像技术是现在国际最先进的计算机展示技术之一,任何普通电脑只需要安装一个插件,就可以在网络浏览器中呈现三维的产品,不但逼真,而且可以动态展示产品的组合过程,特别适合远程浏览. 立体图视觉上层次分明色彩鲜艳,具有很强的视觉冲击力,让观看的人驻景时

  • Python基于matplotlib实现绘制三维图形功能示例

    本文实例讲述了Python基于matplotlib实现绘制三维图形功能.分享给大家供大家参考,具体如下: 代码一: # coding=utf-8 import numpy as np import matplotlib.pyplot as plt import mpl_toolkits.mplot3d x,y = np.mgrid[-2:2:20j,-2:2:20j] #测试数据 z=x*np.exp(-x**2-y**2) #三维图形 ax = plt.subplot(111, project

  • python数据可视化之matplotlib.pyplot基础以及折线图

    不论是数据挖掘还是数据建模,都免不了数据可视化的问题.对于Python来说,Matplotlib是最著名的绘图库,它主要用于二维绘图,当然它也可以进行简单的三维绘图(基于spyder). - 模块引用 import matplotlib.pyplot as plt #引用画图库中的pyplot模块 -折线条图 语法 import matplotlib.pyplot as plt data=[1,2,3,4,5,4,2,4,6,7] #随便创建了一个数据 plt.plot(data) #引用画图库

  • python绘制简单折线图代码示例

    1.画最简单的直线图 代码如下: import numpy as np import matplotlib.pyplot as plt x=[0,1] y=[0,1] plt.figure() plt.plot(x,y) plt.savefig("easyplot.jpg") 结果如下: 代码解释: #x轴,y轴 x=[0,1] y=[0,1] #创建绘图对象 plt.figure() #在当前绘图对象进行绘图(两个参数是x,y轴的数据) plt.plot(x,y) #保存图象 plt

  • python之matplotlib学习绘制动态更新图实例代码

    简介 通过定时器Timer触发事件,定时更新绘图,可以形成动态更新图片.下面的实例是学习<matplotlib for python developers>一文的笔记. 实现 实现代码及简单介绍 通过self.user = self.user[1:] + [temp],每次删除列表的第一元素,在其尾部添加新的元素.这样完成user数据的动态更新.其他详细的解释见文中的注释部分. #-*-coding:utf-8-*- import wx from matplotlib.figure impor

  • Python 绘制可视化折线图

    1. 用 Numpy ndarray 作为数据传入 ply import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt np.random.seed(1000) y = np.random.standard_normal(10) print "y = %s"% y x = range(len(y)) print "x=%s"% x plt.plot(y) plt.show()

  • python绘制分布折线图的示例

    用Python 绘制分布(折线)图,使用的是 plot()函数. 一个简单的例子: # encoding=utf-8 import matplotlib.pyplot as plt from pylab import * # 支持中文 mpl.rcParams['font.sans-serif'] = ['SimHei'] # 'mentioned0cluster', names = ['mentioned1cluster','mentioned2cluster', 'mentioned3clu

  • Python数据可视化之简单折线图的绘制

    目录 创建RandomWalk类 选择方向 绘制随机漫步图 模拟多次随机漫步 给点着色 突出起点和终点 增加点数 调整尺寸以适用屏幕 创建RandomWalk类 为模拟随机漫步,我们将创建一个RandomWalk类,随机选择前进方向,这个类有三个属性,一个存储随机漫步的次数,另外两个存储随机漫步的每个点的x,y坐标,每次漫步都从点(0,0)出发 from random import choice class RandomWalk(): '''一个生成随机漫步数据的类''' def __init_

  • Python matplotlib如何绘制各种流线图

    目录 前言 流线图概述 什么是流线图? 流线图应用场景 获取流线图方法 流线图属性 设置流线图密度 设置流线宽度 设置流线颜色 设置流线缩放 设置流线颜色系 绘制流线图步骤 小试牛刀 总结 前言 在Python关于绘图,Mlab提供开源的matplotlib模块,不仅可以绘制折线图.柱状图.散点图等常规图外,还支持绘制量场图.频谱图.提琴图.箱型图等特殊图,例举往期文章可前往查看详情. 我们日常生活中经常会关注天气预报,在换季的时候,播报员会讲解气流流动情况.在天气预报过程中,气象专家们会根据流

  • Python+matplotlib实现绘制等高线图示例详解

    目录 前言 1. 等高线图概述 什么是等高线图? 等高线图常用场景 绘制等高线图步骤 案例展示 2. 等高线图属性 设置等高线颜色 设置等高线透明度 设置等高线颜色级别 设置等高线宽度 设置等高线样式 3. 显示轮廓标签 4. 填充颜色 5. 添加颜色条说明 总结 前言 我们在往期对matplotlib.pyplot()方法学习,到现在我们已经会绘制折线图.柱状图.散点等常规的图表啦(往期的内容如下,大家可以方便查看往期内容) Python matplotlib底层原理解析 Python利用 m

随机推荐