Python利用OpenCV和skimage实现图像边缘检测

目录
  • 一、简介
  • 二、opencv 实践
  • 三、skimage 实践

一、简介

提取图片的边缘信息是底层数字图像处理的基本任务之一。边缘信息对进一步提取高层语义信息有很大的影响。大部分边缘检测算法都是上个世纪的了,OpenCV 的使用的算法是 Canny 边缘检测算法,大概是在 1986 年由 John F. Canny 提出了,似乎说明边缘检测算法的研究已经到达了瓶颈期。跟人眼系统相比,边缘检测算法仍然逊色不少。

Canny 边缘检测算法是比较出色的算法,也是一种多步算法,可用于检测任何输入图像的边缘。利用它检测图像边缘时主要有以下步骤:

  • 应用高斯滤波来平滑图像,目的是去除噪声。
  • 计算高斯滤波器的导数,计算图像像素的梯度,得到沿x和y维度的梯度。
  • 应用非最大抑制(non-maximum suppression)技术来消除边缘误检(本来不是但检测出来是)
  • 应用双阈值的方法来决定可能的(潜在的)边界
  • 利用滞后阈值方法保留高于梯度幅值的像素,忽略低于低阈值的像素,实现边缘追踪。

Canny 的目标是找到一个最优的边缘检测算法,最优边缘检测的含义是:

  • 最优检测:算法能够尽可能多地标识出图像中的实际边缘,漏检真实边缘的概率和误检非边缘的概率都尽可能小;
  • 最优定位准则:检测到的边缘点的位置距离实际边缘点的位置最近,或者是由于噪声影响引起检测出的边缘偏离物体的真实边缘的程度最小;
  • 检测点与边缘点一一对应:算子检测的边缘点与实际边缘点应该是一一对应。

为了满足这些要求 Canny 使用了变分法(calculus of variations),这是一种寻找优化特定功能的函数的方法。最优检测使用四个指数函数项表示,它可以由高斯函数的一阶导数来近似。

二、opencv 实践

cv2.Canny(image, threshold1, threshold2, edges=None, apertureSize=None, L2gradient=None):
# 用自定义梯度
cv2.Canny(dx, dy, threshold1, threshold2[, edges[, L2gradient]]) -> edges
  • image:参表示8位输入图像
  • threshold1:设置的低阈值
  • threshold2:设置的高阈值
  • edges:输出边缘图像,单通道8位图像
  • apertureSize:Sobel算子的大小
  • L2gradient:一个布尔值,如果为真,则使用更精确的 L2 范数进行计算(即两个方向的倒数的平方和再开方),否则使用 L1 范数(直接将两个方向导数的绝对值相加)。
def opencv_canny(image):
    # 高斯模糊  降低噪声
    blurred = cv.GaussianBlur(image, (5, 5), 0)
    # 转为灰度图像
    gray = cv.cvtColor(blurred, cv.COLOR_BGR2GRAY)
    # 计算x y 方向梯度
    grad_x = cv.Sobel(gray, cv.CV_16SC1, 1, 0)
    grad_y = cv.Sobel(gray, cv.CV_16SC1, 0, 1)
    edge_output = cv.Canny(grad_x, grad_y,  60, 120)
    # 英文字体   Times New Roman
    plt.rcParams['font.sans-serif'] = ['Times New Roman']

    # 可视化结果
    plt.figure(figsize=(8, 4), dpi=500)
    plt.subplot(121)
    plt.imshow(gray, cmap='gray')
    plt.title('Original Image', fontsize=18)
    plt.xticks([]), plt.yticks([])
    plt.subplot(122)
    plt.imshow(edge_output, cmap='gray')
    plt.title('Edge Image', fontsize=18)
    plt.xticks([]), plt.yticks([])
    plt.savefig("002.png", dpi=500)
    plt.show()

if __name__ == "__main__":
    # 读取图像  传入
    src = cv.imread("Lenna.png")
    opencv_canny(src)

结果如下:

三、skimage 实践

import numpy as np
from skimage.io import imread
from skimage.feature import canny
import matplotlib.pyplot as plt

# 读取图像
img = imread("Lenna.png", as_gray=True)
# 高斯模糊  降低噪声
img = cv.GaussianBlur(img, (5, 5), 0)

# Canny边缘检测
edges = canny(img, sigma=1.6)

# 可视化结果
plt.rcParams['font.sans-serif'] = ['Times New Roman']
plt.figure(figsize=(8, 4), dpi=500)
plt.subplot(121)
plt.imshow(img, cmap='gray')
plt.title('Original Image', fontsize=18)
plt.xticks([]), plt.yticks([])
plt.subplot(122)
plt.imshow(edges, cmap='gray')
plt.title('Edge Image', fontsize=18)
plt.xticks([]), plt.yticks([])

plt.show()

结果如下:

import numpy as np
import matplotlib.pyplot as plt
from scipy import ndimage as ndi
from skimage import feature

# 产生带有噪声的举行图案
im = np.zeros((128, 128))
im[32:-32, 32:-32] = 1
im = ndi.rotate(im, 15, mode='constant')  # 旋转一定角度
im = ndi.gaussian_filter(im, 4)
im += 0.2 * np.random.random(im.shape)

# Compute the Canny filter for two values of sigma
edges1 = feature.canny(im, sigma=1)
edges2 = feature.canny(im, sigma=3)

# display results
fig, (ax1, ax2, ax3) = plt.subplots(nrows=1, ncols=3, figsize=(8, 4),
                                    sharex=True, sharey=True, dpi=500)

ax1.imshow(im, cmap=plt.cm.gray)
ax1.axis('off')
ax1.set_title('Noisy image', fontsize=20)

ax2.imshow(edges1, cmap=plt.cm.gray)
ax2.axis('off')
ax2.set_title(r'Canny filter, $\sigma=1$', fontsize=20)

ax3.imshow(edges2, cmap=plt.cm.gray)
ax3.axis('off')
ax3.set_title(r'Canny filter, $\sigma=3$', fontsize=20)

fig.tight_layout()

plt.show()

结果如下:

skimage 库中函数

skimage.feature.canny(image, sigma=1.0,
                      low_threshold=None, high_threshold=None,
                      mask=None, use_quantiles=False)
  • sigma:高斯滤波器的标准差
  • low_threshold:Canny算法最后一步中,小于该阈值的像素直接置为0
  • high_threshold:Canny算法最后一步中,大于该阈值的像素直接置为255

以上就是Python利用OpenCV和skimage实现图像边缘检测的详细内容,更多关于Python图像边缘检测的资料请关注我们其它相关文章!

(0)

相关推荐

  • python skimage图像处理

    目录 引言 scikit-image进行数字图像处理 图片信息 skimage包的子模块 从外部读取图片并显示 程序自带图片 保存图片 图像像素的访问与裁剪 color模块的rgb2gray()函数 结果 图像数据类型及颜色空间转换 1.unit8转float 2.float转uint8 其它的转换 图像的绘制 其它方法绘图并显示 图像的批量处理 图像的形变与缩放 1.改变图片尺寸resize 2.按比例缩放rescale 3.旋转 rotate 4.图像金字塔 对比度与亮度调整 1.gamma

  • python opencv实现图像边缘检测

    本文利用python opencv进行图像的边缘检测,一般要经过如下几个步骤: 1.去噪 如cv2.GaussianBlur()等函数: 2.计算图像梯度 图像梯度表达的是各个像素点之间,像素值大小的变化幅度大小,变化较大,则可以认为是出于边缘位置,最多可简化为如下形式: 3.非极大值抑制 在获得梯度的方向和大小之后,应该对整幅图像做一个扫描,去除那些非边界上的点.对每一个像素进行检查,看这个点的梯度是不是周围具有相同梯度方向的点中最大的.如下图所示: 4.滞后阈值 现在要确定那些边界才是真正的

  • 详解Python中图像边缘检测算法的实现

    目录 写在前面 1.一阶微分算子 1.1 Prewitt算子 1.2 Sobel算子 2.二阶微分算子 2.1 Laplace算子 2.2 LoG算子 3.Canny边缘检测 写在前面 从本节开始,计算机视觉教程进入第三章节——图像特征提取.在本章,你会见到一张简简单单的图片中蕴含着这么多你没注意到的细节特征,而这些特征将会在今后更高级的应用中发挥着极其重要的作用.本文讲解基础特征之一——图像边缘. 本文采用面向对象设计,定义了一个边缘检测类EdgeDetect,使图像边缘检测算法的应用更简洁,

  • python实现图像边缘检测

    本文实例为大家分享了python实现图像边缘检测的具体代码,供大家参考,具体内容如下 任务描述 背景 边缘检测是数字图像处理领域的一个常用技术,被广泛应用于图像特征提取.目标识别.计算机视觉等领域.边缘可以理解为像素值发生跃迁的地方,而边缘检测就是要找到这样的地方.如下图所示,对左图进行边缘检测,结果为右图. 基于卷积运算可实现边缘检测,对图像 1(设分辨率为 w×h)进行边缘检测的方法如下: 1)将图像 1 转换成灰度图,仍称为图像 1:2)新建图像 2,图像 2 为灰度图,分辨率与图像 1

  • Python图像锐化与边缘检测之Scharr,Canny,LOG算子详解

    目录 一.Scharr算子 二.Cann算子 三.LOG算子 四.总结 一.Scharr算子 由于Sobel算子在计算相对较小的核的时候,其近似计算导数的精度比较低,比如一个3×3的Sobel算子,当梯度角度接近水平或垂直方向时,其不精确性就越发明显.Scharr算子同Sobel算子的速度一样快,但是准确率更高,尤其是计算较小核的情景,所以利用3×3滤波器实现图像边缘提取更推荐使用Scharr算子. Scharr算子又称为Scharr滤波器,也是计算x或y方向上的图像差分,在OpenCV中主要是

  • python skimage 连通性区域检测方法

    涉及到的函数为 import matplotlib.pyplot as plt from skimage import measure, color labels = measure.label(img4[:,:,0], connectivity=2) dst = color.label2rgb(labels) plt.imshow(dst) labels为整个灰度图像的坐标的类别标签,值为[0, max_label], 一个连通区域为一个 lable . 以上这篇python skimage

  • Python利用OpenCV和skimage实现图像边缘检测

    目录 一.简介 二.opencv 实践 三.skimage 实践 一.简介 提取图片的边缘信息是底层数字图像处理的基本任务之一.边缘信息对进一步提取高层语义信息有很大的影响.大部分边缘检测算法都是上个世纪的了,OpenCV 的使用的算法是 Canny 边缘检测算法,大概是在 1986 年由 John F. Canny 提出了,似乎说明边缘检测算法的研究已经到达了瓶颈期.跟人眼系统相比,边缘检测算法仍然逊色不少. Canny 边缘检测算法是比较出色的算法,也是一种多步算法,可用于检测任何输入图像的

  • python 利用opencv实现图像网络传输

    本代码主要实现的是利用网络传输图片,用在我的树莓派项目之上.该项目在PC上运行服务端,树莓派上运行客户端,两者连接到同一局域网中,修改代码中的IP地址,就可以实现将树莓派采集到的图像数据实时传输到PC端.先运行服务端代码,然后运行客户端代码即可.树莓派摄像头使用的是普通的USB摄像头,并且在树莓派上安装了opencv,在树莓派上安装opencv的过程可以参考https://www.pyimagesearch.com/2017/09/04/raspbian-stretch-install-open

  • python利用opencv如何实现答题卡自动判卷

    目录 1.设定答题卡模板 2.读取答题卡图像并对图像进行灰度化处理 3.高斯模糊图像去噪点 4.使用大津法二值分割图像 5.使用开运算去噪点 6.使用canny边缘检测算法 7.筛选答题区域轮廓,透视变换矫正目标区域 使用摄像头实时判卷部分 总结 1.设定答题卡模板 该图像为答题卡的答题区域,黑色边框是为了能够在各种环境中轻易的检测,左部分和上部分的黑色矩形,是为能够定位到答题选项的坐标而设置,同时题目数量为20×3共60道选择题,在进行批改试卷之前,需要手动输入该次考试的正确答案作为模板来对识

  • python利用Opencv实现人脸识别功能

    本文实例为大家分享了python利用Opencv实现人脸识别功能的具体代码,供大家参考,具体内容如下 首先:需要在在自己本地安装opencv具体步骤可以问度娘 如果从事于开发中的话建议用第三方的人脸识别(推荐阿里) 1.视频流中进行人脸识别 # -*- coding: utf-8 -*- import cv2 import sys from PIL import Image def CatchUsbVideo(window_name, camera_idx): cv2.namedWindow(w

  • Python 利用OpenCV给照片换底色的示例代码

    OpenCV的全称是:Open Source Computer Vision Library.OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows和Mac OS操作系统上.它轻量级而且高效--由一系列 C 函数和少量 C++ 类构成,同时提供了Python.Ruby.MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法.相比于PIL库来说OpenCV更加强大, 可以做更多更复杂的应用,比如人脸识别等. 1. 读入并显示图片 im

  • python利用opencv调用摄像头实现目标检测

    目录 使用到的库 实现思路 实现代码 2020/4/26更新:FPS计算 FPS记录的原理 FPS实现代码 使用到的库 好多人都想了解一下如何对摄像头进行调用,然后进行目标检测,于是我做了这个小BLOG. opencv-python==4.1.2.30 Pillow==6.2.1 numpy==1.17.4 这些都是通用的库,版本不同问题应该也不大. 实现思路 利用opencv调用摄像头,读取每一帧传入目标检测网络检测,将检测结果呈现. 由于本文所用的检测格式为RGB格式,CV2读取的时候会使用

  • python利用opencv保存、播放视频

    代码已上传至:https://gitee.com/tqbx/python-opencv/tree/master/Getting_started_videos 目标 学习读取视频,播放视频,保存视频. 学习从相机中捕捉帧并展示. 学习cv2.VideoCapture(),cv2.VideoWriter()的使用 从相机中捕捉视频 通过自带摄像头捕捉视频,并将其转化为灰度视频显示出来. 基本步骤如下: 1.首先创建一个VideoCapture对象,它的参数包含两种: 设备索引,指定摄像机的编号. 视

  • python利用opencv实现颜色检测

    本文实例为大家分享了python利用opencv实现颜色检测的具体代码,供大家参考,具体内容如下 需要实现倒车辅助标记检测的功能,倒车辅助标记颜色已经确定了,所以不需要使用深度学习的方法,那样成本太高了,直接可以使用颜色检测的方法. 1.首先需要确定待检测目标的HSV值 import cv2 img = cv2.imread('l3.png') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) hsv = cv2.cvtColor(img, cv2.COL

  • python利用opencv实现SIFT特征提取与匹配

    本文实例为大家分享了利用opencv实现SIFT特征提取与匹配的具体代码,供大家参考,具体内容如下 1.SIFT 1.1.sift的定义 SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述.这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子. 1.2.sift算法介绍 SIFT由David Lowe在1999年提出,在2004年加以完善 .SIFT在数字图像的特征描述方面当之无愧可称之为最红

  • Python如何使用cv2.canny进行图像边缘检测

    目录 使用cv2.canny进行图像边缘检测 阈值对检测结果的影响 sobel算子对检测结果的影响 范数对检测结果的影响 总结 使用cv2.canny进行图像边缘检测 CV2提供了提取图像边缘的函数canny. 其算法思想如下: 1.使用高斯模糊,去除噪音点(cv2.GaussianBlur) 2.灰度转换(cv2.cvtColor) 3.使用sobel算子,计算出每个点的梯度大小和梯度方向 4.使用非极大值抑制(只有最大的保留),消除边缘检测带来的杂散效应 5.应用双阈值,来确定真实和潜在的边

随机推荐