使用python在本地电脑上快速处理数据

大数据一般是在“云”上玩的,但“云”都是要钱的,而且数据上上下下的也比较麻烦。所以,在本地电脑上快速处理数据的技能还是要的。

pandas

在比赛中学到的一个工具,本地可以在亿级别的数据上进行聚合等操作。内部的数据包括:
• Series:一维数组,每个元素有一个标签
• DataFrame:二维表格,可以看做Series的集合
• Panel:三维数据

数据的初始化

我们可以通过构造函数来初始化,从下面的代码中可以想象得到数据是样子:

from pandas import Series, DataFrame

s = Series(data=[1, 2, 3], index=['a', 'b', 'c'])

df = DataFrame(
  data=[
    [1, 2, 3],
    [4, 5, 6],
    [7, 8, 9]
  ],
  index=['i1', 'i2', 'i3'],
  columns=['c1', 'c2', 'c3']
)

如果源数据是格式比较好的CSV(或者是自己加工生成的中间数据),可以直接读取:
df = pandas.read_csv("../volume.csv", header=0)

数据的更新

更新结构

在定义完成之后可以对行、列进行增减(增减数据、修改结构):
• 增加列: • df.insert(3, 'new_column', [4, 7, 10])
• df['c4'] = [4, 7, 10]

• 删除列 • df.pop('c1')
• df = df.drop('c1', axis=1)

• 增加行:一般不要动态的增加行,据说新能不高 • df.loc['i4'] = [10, 11, 12]
• df.loc['i4'] = {'c1': 10, 'c2': 11, 'c3': 12}

• 删除行: • df = df.drop('i1', axis=0)

更新数据

我们可以精确修改单个位置的值:
• df['c1']['i1'] = 77
• df.ix[1, 2] = 66

合并数据

数据很多时候分布在不同的DataFrame中,要使用需要将他们进行合并,第一种方式是concat(基础方法):

import pandas as pd

df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
          'B': ['B0', 'B1', 'B2', 'B3'],
          'C': ['C0', 'C1', 'C2', 'C3'],
          'D': ['D0', 'D1', 'D2', 'D3']},
          index=[0, 1, 2, 3])

df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
          'B': ['B4', 'B5', 'B6', 'B7'],
          'C': ['C4', 'C5', 'C6', 'C7'],
          'D': ['D4', 'D5', 'D6', 'D7']},
          index=[4, 5, 6, 7])

result = pd.concat([df1, df2])

合并完的结果为:

  A  B  C  D
0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3
4 A4 B4 C4 D4
5 A5 B5 C5 D5
6 A6 B6 C6 D6
7 A7 B7 C7 D7

其参数含义如下:
• objs :合并的数据(Series、DataFrame)
• axis :合并轴方向,行(0)、列(1)
• join :关联类型(inner、outer)
• join_axes :结果行,eg: pd.concat([df1, df2], axis=1, join_axes=[pd.Int64Index([1, 2, 3])])
• ignore_index :是否忽略objs中传入的索引
• keys :来自不同表的index,每个表一个(ignore_index=True时不管用)
• levels :不同层次的索引
• names :不同层次的索引的名字
• verify_integrity :检查是否包含重复项(有一定的代价)
• copy :是否赋值数据

另一个相对简化点的操作是append(简化版,好像没啥特别的):
result = df1.append(df2)

接着来看重点方法merge(将两个表的数据进行融合):

import pandas as pd

left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
           'A': ['A0', 'A1', 'A2', 'A3'],
           'B': ['B0', 'B1', 'B2', 'B3']})

right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
           'C': ['C0', 'C1', 'C2', 'C3'],
           'D': ['D0', 'D1', 'D2', 'D3']})

result = pd.merge(left, right, on='key')

print(result)

结果为(注意观察与concat不一样的地方):

  A  B key  C  D
0 A0 B0 K0 C0 D0
1 A1 B1 K1 C1 D1
2 A2 B2 K2 C2 D2
3 A3 B3 K3 C3 D3

方法的参数有:
• left、right :将要进行关联的两个表
• how :关联方式(left、right、inner、outer)
• on :实现关联的列,不传应该是找相同列名
• left_on、right_on :分别为left、right的关联列,在列名不同时使用
• left_index、right_index :是否用索引来关联
• sort :排序
• suffixes :后缀
• copy :是否复制数据

对应的简化版本为join方法:

import pandas as pd

left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
           'B': ['B0', 'B1', 'B2', 'B3']},
          index=['K0', 'K1', 'K2', 'K3'])

right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],
           'D': ['D0', 'D1', 'D2', 'D3']},
           index=['K0', 'K1', 'K2', 'K3'])

result = left.join(right)

print(result)

输出为:

   A  B  C  D
K0 A0 B0 C0 D0
K1 A1 B1 C1 D1
K2 A2 B2 C2 D2
K3 A3 B3 C3 D3

数据的查询和分析

基本查询

精确查看单个位置数据的方法:
• df['c1']['i1']
• df.loc['i1']['c1'] (先行后列)
• df.iloc[1] (下标操作)
• df.ix['i1'][1] 或 df.ix[0, 2] (随意使用下标或名称)

通过切片的操作批量取出数据:
• df.loc['i1':'i2', ['c1', 'c2']]
• df.iloc[1:3, [1, 2]]
• df.ix[1:3, 0:2]

查看某行或某列:
• 行: df.loc['i1']
• 列: df['c1']

分组

分组(GroupBy)是最最基本的一个分析手段,看个例子:

import pandas as pd
import numpy as np

df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],
          'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],
          'C': np.random.randn(8),
          'D': np.random.randn(8)})

result = df.groupby(['A'])

print(result.get_group('foo'))

其他分组形式:
• df.groupby('A')
• df.groupby(['A', 'B'])
• df.groupby(group_func, axis=1)
• df.groupby(level=0)
• df.groupby([pd.Grouper(level=0), 'A'])

可以对各组进行遍历:

for name, group in result:
  print(name)
  print(group)

对分组的结果可以过滤:

df.groupby('A').B.filter(lambda x : len(x) > 1)

进一步对各个分组进行计算(结果太直观,就不写了):
• df.groupby(['A', 'B']).sum()
• df.groupby(['A', 'B']).sum().reset_index()
• df.groupby(['A', 'B']).aggregate(np.sum)
• df.groupby(['A', 'B']).agg(np.sum)
• df.groupby(['A', 'B']).agg([np.sum, np.mean])
• df.groupby(['A', 'B']).agg([np.sum, np.mean]).rename(columns={'sum': 's', 'mean': 'm'})
• df.groupby(['A', 'B']).agg({'C': np.sum, 'D': np.mean})
• df.groupby(['A', 'B']).agg({'C': 'sum', 'D': 'mean'})

利用transform(类似的还有apply)可以对各个分组分别计算:

import pandas as pd
import numpy as np

df = pd.DataFrame(data={
  'A': [1, 1, 3],
  'B': [4, 5, 6],
  'C': [7, np.nan, 9]})

print(df.groupby('A')['B'].transform(lambda x : x - x.mean()))

输出结果为:

0  -0.5
1  0.5
2  0.0
Name: B, dtype: float64

类似的,可以在分组上使用窗口函数:
• rolling
• resample
• expanding

条件过滤

用一些常用的构造方式,可以有类似SQL的开发效率��:
• tips[tips['time'] == 'Dinner'].head(5)
• tips[(tips['time'] == 'Dinner') & (tips['tip'] > 5.00)]
• tips[(tips['size'] >= 5) | (tips['total_bill'] > 45)]
• frame[frame['col2'].isnull()]
• frame[frame['col1'].notnull()]

最后,如果想图形化看在PyCharm里面需要搞个 plt.show() (其他的IDE并不清楚)。

numpy

比较早接触的numpy,总体上来看处理数据比自带类型方便些:
• np.array([[1, 2, 3, 4],[4, 5, 6, 7], [7, 8, 9, 10]])
• np.array((5, 6, 7, 8))

主要集中在数组、矩阵的处理上!是很多工具的基础。

(0)

相关推荐

  • Windows下Python使用Pandas模块操作Excel文件的教程

    安装Python环境 ANACONDA是一个Python的发行版本,包含了400多个Python最常用的库,其中就包括了数据分析中需要经常使用到的Numpy和Pandas等.更重要的是,不论在哪个平台上,都可以一键安装,自动配置好环境,不需要用户任何的额外操作,非常方便.因此,安装Python环境就只需要到ANACONDA网站上下载安装文件,双击安装即可. ANACONDA官方下载地址:https://www.continuum.io/downloads 安装完成之后,使用windows + r

  • python中pandas.DataFrame排除特定行方法示例

    前言 大家在使用Python进行数据分析时,经常要使用到的一个数据结构就是pandas的DataFrame,关于python中pandas.DataFrame的基本操作,大家可以查看这篇文章. pandas.DataFrame排除特定行 如果我们想要像Excel的筛选那样,只要其中的一行或某几行,可以使用isin()方法,将需要的行的值以列表方式传入,还可以传入字典,指定列进行筛选. 但是如果我们只想要所有内容中不包含特定行的内容,却并没有一个isnotin()方法.我今天的工作就遇到了这样的需

  • Python科学计算之Pandas详解

    起步 Pandas最初被作为金融数据分析工具而开发出来,因此 pandas 为时间序列分析提供了很好的支持. Pandas 的名称来自于面板数据(panel data)和python数据分析 (data analysis) .panel data是经济学中关于多维数据集的一个术语,在Pandas中也提供了panel的数据类型. 在我看来,对于 Numpy 以及 Matplotlib ,Pandas可以帮助创建一个非常牢固的用于数据挖掘与分析的基础.而Scipy当然是另一个主要的也十分出色的科学计

  • python中pandas.DataFrame对行与列求和及添加新行与列示例

    本文介绍的是python中pandas.DataFrame对行与列求和及添加新行与列的相关资料,下面话不多说,来看看详细的介绍吧. 方法如下: 导入模块: from pandas import DataFrame import pandas as pd import numpy as np 生成DataFrame数据 df = DataFrame(np.random.randn(4, 5), columns=['A', 'B', 'C', 'D', 'E']) DataFrame数据预览: A

  • 用Python的pandas框架操作Excel文件中的数据教程

    引言 本文的目的,是向您展示如何使用pandas来执行一些常见的Excel任务.有些例子比较琐碎,但我觉得展示这些简单的东西与那些你可以在其他地方找到的复杂功能同等重要.作为额外的福利,我将会进行一些模糊字符串匹配,以此来展示一些小花样,以及展示pandas是如何利用完整的Python模块系统去做一些在Python中是简单,但在Excel中却很复杂的事情的. 有道理吧?让我们开始吧. 为某行添加求和项 我要介绍的第一项任务是把某几列相加然后添加一个总和栏. 首先我们将excel 数据 导入到pa

  • python中pandas.DataFrame的简单操作方法(创建、索引、增添与删除)

    前言 最近在网上搜了许多关于pandas.DataFrame的操作说明,都是一些基础的操作,但是这些操作组合起来还是比较费时间去正确操作DataFrame,花了我挺长时间去调整BUG的.我在这里做一些总结,方便你我他.感兴趣的朋友们一起来看看吧. 一.创建DataFrame的简单操作: 1.根据字典创造: In [1]: import pandas as pd In [3]: aa={'one':[1,2,3],'two':[2,3,4],'three':[3,4,5]} In [4]: bb=

  • Python数据分析之真实IP请求Pandas详解

    前言 pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包类似于 Numpy 的核心是 ndarray,pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的 .Series 和 DataFrame 分别对应于一维的序列和二维的表结构.pandas 约定俗成的导入方法如下: from pandas import Series,DataFrame import pandas as pd 1.1. Pandas分析步骤 1.载入日志数据 2.载

  • 在Python中利用Pandas库处理大数据的简单介绍

    在数据分析领域,最热门的莫过于Python和R语言,此前有一篇文章<别老扯什么Hadoop了,你的数据根本不够大>指出:只有在超过5TB数据量的规模下,Hadoop才是一个合理的技术选择.这次拿到近亿条日志数据,千万级数据已经是关系型数据库的查询分析瓶颈,之前使用过Hadoop对大量文本进行分类,这次决定采用Python来处理数据: 硬件环境         CPU:3.5 GHz Intel Core i7         内存:32 GB HDDR 3 1600 MHz         硬

  • 利用Python中的pandas库对cdn日志进行分析详解

    前言 最近工作工作中遇到一个需求,是要根据CDN日志过滤一些数据,例如流量.状态码统计,TOP IP.URL.UA.Referer等.以前都是用 bash shell 实现的,但是当日志量较大,日志文件数G.行数达数千万亿级时,通过 shell 处理有些力不从心,处理时间过长.于是研究了下Python pandas这个数据处理库的使用.一千万行日志,处理完成在40s左右. 代码 #!/usr/bin/python # -*- coding: utf-8 -*- # sudo pip instal

  • 使用python在本地电脑上快速处理数据

    大数据一般是在"云"上玩的,但"云"都是要钱的,而且数据上上下下的也比较麻烦.所以,在本地电脑上快速处理数据的技能还是要的. pandas 在比赛中学到的一个工具,本地可以在亿级别的数据上进行聚合等操作.内部的数据包括: • Series:一维数组,每个元素有一个标签 • DataFrame:二维表格,可以看做Series的集合 • Panel:三维数据 数据的初始化 我们可以通过构造函数来初始化,从下面的代码中可以想象得到数据是样子: from pandas im

  • python多线程性能测试之快速mock数据

    目录 背景 安装相关类包 快速 mock kafka 批量测试数据 appmetrics 使用方法 Meters 背景 在我们测试工作中,性能测试也是避免不了的,因此在性能测试前期准备工作中,需要 mock 足够批量的数据进行压测.那么怎么能在短时间内快速 mock 出想要的格式数据和足够量的数据进行压测?那么往下看. 安装相关类包 pip install kafka pip install appmetrics pip install faker pip install pykafka 快速

  • python输出电脑上所有的串口名的方法

    输出电脑上所有的串口名: import serial import serial.tools.list_ports from easygui import * port_list = list(serial.tools.list_ports.comports()) if len(port_list) <= 0: print "The Serial port can't find!" else: for i in list(port_list): #print i[0] 仅仅输出端

  • 花3分钟时间来关闭你电脑上没用的服务(加快你的电脑运行)

    [推荐]花3分钟时间来关闭你电脑上没用的服务(加快你的电脑运行) 花3分钟时间来关闭你电脑上没用的服务,让你的电脑百毒不侵.提速百倍(^0^)! 可能有很多朋友还不知道如何启动服务选项:在控制面板→管理工具→服务:指着建议为"已停用"的服务属性改成"已禁用"并按停止即可: Alerter  微软: 通知选取的使用者及计算机系统管理警示.如果停止这个服务,使用系统管理警示的程序将不会收到通知.如果停用这个服务,所有依存于它的服务将无法启动.  补充: 一般家用计算机根

  • 如何在自己的电脑上配置APNS推送环境

    本文只是记录一下如何在自己的电脑上配置APNS推送环境,其它的如推送的原理,流程什么的这里就不写了. 一. 去Apple 开发者中心,创建App ID.注意App ID不能使用通配符.并注意添加Push Notification Service 对于已经创建的APP ID,也可以编辑给他添加Push Notification Service 二. 创建development 和 production的Certificates及Profiles. 步骤略. 注意 1. 创建Profile的时候Ap

  • 使用Python实现博客上进行自动翻页

    先上一张代码及代码运行后的输出结果的图! 下面上代码: # coding=utf-8 import os import time from selenium import webdriver #打开火狐浏览器 需要V47版本以上的 driver = webdriver.Firefox()#打开火狐浏览器 url = "http://codelife.ecit-it.com"#这里打开我的博客网站 driver.get(url)#设置火狐浏览器打开的网址 time.sleep(2) #使

  • 本地文件上传到七牛云服务器示例(七牛云存储)

    复制代码 代码如下: # _*_ coding: utf-8 _*_#---------------------------------------#   程序:把本地文件上传到七牛云服务器#   版本:0.1#   作者:liu jia#   日期:2014-01-07#   语言:Python 2.7#--------------------------------------- import qiniu.confimport sysimport os#登录后从#https://portal

  • 用Python删除本地目录下某一时间点之前创建的所有文件的实例

    因为工作原因,需要定期清理某个文件夹下面创建时间超过1年的所有文件,所以今天集中学习了一下Python对于本地文件及文件夹的操作.网上 这篇文章 简明扼要地整理出最常见的os方法,抄袭如下: os.listdir(dirname):列出dirname下的目录和文件 os.getcwd():获得当前工作目录 os.curdir:返回当前目录('.') os.chdir(dirname):改变工作目录到dirname os.path.isdir(name):判断name是不是一个目录,name不是目

  • python3写的简单本地文件上传服务器实例

    python是个很好玩的东西?好吧我随口说的,反正因为各种原因(其实到底是啥我也不知道),简单的学习了下python,然后写了一个上传文件上服务器的小玩具练手. 大概功能是这样: 1.获取本地文件列表(包括文件夹) 2.检查服务器上是否存在,不存在直接上传,存在的话,文件夹无视,文件比较大小,大小不一致则覆盖,最后检查服务器上是否存在本地没有的文件,存在则删除 3.之后增加了忽略列表,忽略文件类型 4.然后增加了重启tomcat,但是这个功能未进行测试 大概就是这个样子,哦了,丢代码丢代码 #!

  • python删除本地夹里重复文件的方法

    上次的博文主要说了从网上下载图片,于是我把整个笑话网站的图片都拔下来了,但是在拔取的图片中有很多重复的,比如说页面的其他图片.重复发布的图片等等.所以我又找了python的一些方法,写了一个脚本可以删除指定文件夹里重复的图片. 一.方法和思路 1.比对文件是否相同的方法:hashlib库里提供了获取文件md5值的方法,所以我们可以通过md5值来判定是否图片相同 2.对文件的操作:os库里有对文件的操作方法,比如:os.remove()可以删除指定的文件, os.listdir()可以通过指定文件

随机推荐