一些常用的Python爬虫技巧汇总

Python爬虫:一些常用的爬虫技巧总结

爬虫在开发过程中也有很多复用的过程,这里总结一下,以后也能省些事情。

1、基本抓取网页

get方法

import urllib2
url "http://www.baidu.com"
respons = urllib2.urlopen(url)
print response.read()

post方法

import urllib
import urllib2

url = "http://abcde.com"
form = {'name':'abc','password':'1234'}
form_data = urllib.urlencode(form)
request = urllib2.Request(url,form_data)
response = urllib2.urlopen(request)
print response.read()

2、使用代理IP

在开发爬虫过程中经常会遇到IP被封掉的情况,这时就需要用到代理IP;

在urllib2包中有ProxyHandler类,通过此类可以设置代理访问网页,如下代码片段:

import urllib2

proxy = urllib2.ProxyHandler({'http': '127.0.0.1:8087'})
opener = urllib2.build_opener(proxy)
urllib2.install_opener(opener)
response = urllib2.urlopen('http://www.baidu.com')
print response.read()

3、Cookies处理

cookies是某些网站为了辨别用户身份、进行session跟踪而储存在用户本地终端上的数据(通常经过加密),python提供了cookielib模块用于处理cookies,cookielib模块的主要作用是提供可存储cookie的对象,以便于与urllib2模块配合使用来访问Internet资源.

代码片段:

import urllib2, cookielib

cookie_support= urllib2.HTTPCookieProcessor(cookielib.CookieJar())
opener = urllib2.build_opener(cookie_support)
urllib2.install_opener(opener)
content = urllib2.urlopen('http://XXXX').read()

关键在于CookieJar(),它用于管理HTTP cookie值、存储HTTP请求生成的cookie、向传出的HTTP请求添加cookie的对象。整个cookie都存储在内存中,对CookieJar实例进行垃圾回收后cookie也将丢失,所有过程都不需要单独去操作。

手动添加cookie

代码如下:

cookie = "PHPSESSID=91rurfqm2329bopnosfu4fvmu7; kmsign=55d2c12c9b1e3; KMUID=b6Ejc1XSwPq9o756AxnBAg="
request.add_header("Cookie", cookie)

4、伪装成浏览器

某些网站反感爬虫的到访,于是对爬虫一律拒绝请求。所以用urllib2直接访问网站经常会出现HTTP Error 403: Forbidden的情况

对有些 header 要特别留意,Server 端会针对这些 header 做检查

1).User-Agent 有些 Server 或 Proxy 会检查该值,用来判断是否是浏览器发起的 Request
2).Content-Type 在使用 REST 接口时,Server 会检查该值,用来确定 HTTP Body 中的内容该怎样解析。

这时可以通过修改http包中的header来实现,代码片段如下:

import urllib2

headers = {
 'User-Agent':'Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.6) Gecko/20091201 Firefox/3.5.6'
}
request = urllib2.Request(
 url = 'http://my.oschina.net/jhao104/blog?catalog=3463517',
 headers = headers
)
print urllib2.urlopen(request).read()

5、页面解析

对于页面解析最强大的当然是正则表达式,这个对于不同网站不同的使用者都不一样,就不用过多的说明,附两个比较好的网址:

正则表达式入门:http://www.jb51.net/article/79618.htm

正则表达式在线测试:http://tool.oschina.net/regex/

其次就是解析库了,常用的有两个lxml和BeautifulSoup,对于这两个的使用介绍两个比较好的网站:

lxml:http://my.oschina.net/jhao104/blog/639448

BeautifulSoup:http://cuiqingcai.com/1319.html

对于这两个库,我的评价是,都是HTML/XML的处理库,Beautifulsoup纯python实现,效率低,但是功能实用,比如能用通过结果搜索获得某个HTML节点的源码;lxmlC语言编码,高效,支持Xpath

6、验证码的处理

对于一些简单的验证码,可以进行简单的识别。本人也只进行过一些简单的验证码识别。但是有些反人类的验证码,比如12306,可以通过打码平台进行人工打码,当然这是要付费的。

7、gzip压缩

有没有遇到过某些网页,不论怎么转码都是一团乱码。哈哈,那说明你还不知道许多web服务具有发送压缩数据的能力,这可以将网络线路上传输的大量数据消减 60% 以上。这尤其适用于 XML web 服务,因为 XML 数据 的压缩率可以很高。

但是一般服务器不会为你发送压缩数据,除非你告诉服务器你可以处理压缩数据。

于是需要这样修改代码:

import urllib2, httplib
request = urllib2.Request('http://xxxx.com')
request.add_header('Accept-encoding', 'gzip') 1
opener = urllib2.build_opener()
f = opener.open(request)

这是关键:创建Request对象,添加一个 Accept-encoding 头信息告诉服务器你能接受 gzip 压缩数据

然后就是解压缩数据:

import StringIO
import gzip

compresseddata = f.read()
compressedstream = StringIO.StringIO(compresseddata)
gzipper = gzip.GzipFile(fileobj=compressedstream)
print gzipper.read()

8、多线程并发抓取

单线程太慢的话,就需要多线程了,这里给个简单的线程池模板 这个程序只是简单地打印了1-10,但是可以看出是并发的。

虽然说python的多线程很鸡肋,但是对于爬虫这种网络频繁型,还是能一定程度提高效率的。

from threading import Thread
from Queue import Queue
from time import sleep
# q是任务队列
#NUM是并发线程总数
#JOBS是有多少任务
q = Queue()
NUM = 2
JOBS = 10
#具体的处理函数,负责处理单个任务
def do_somthing_using(arguments):
 print arguments
#这个是工作进程,负责不断从队列取数据并处理
def working():
 while True:
 arguments = q.get()
 do_somthing_using(arguments)
 sleep(1)
 q.task_done()
#fork NUM个线程等待

 alert(“Hello CSDN”);
for i in range(NUM):
 t = Thread(target=working)
 t.setDaemon(True)
 t.start()
#把JOBS排入队列
for i in range(JOBS):
 q.put(i)
#等待所有JOBS完成
q.join()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python实现爬虫统计学校BBS男女比例之多线程爬虫(二)

    接着第一篇继续学习. 一.数据分类 正确数据:id.性别.活动时间三者都有 放在这个文件里file1 = 'ruisi\\correct%s-%s.txt' % (startNum, endNum) 数据格式为293001 男 2015-5-1 19:17 没有时间:有id.有性别,无活动时间 放这个文件里file2 = 'ruisi\\errTime%s-%s.txt' % (startNum, endNum) 数据格式为2566 女 notime 用户不存在:该id没有对应的用户 放这个文件

  • python实现爬虫统计学校BBS男女比例之数据处理(三)

    本文主要介绍了数据处理方面的内容,希望大家仔细阅读. 一.数据分析 得到了以下列字符串开头的文本数据,我们需要进行处理 二.回滚 我们需要对httperror的数据进行再处理 因为代码的原因,具体可见本系列文章(二),会导致文本里面同一个id连续出现几次httperror记录: //httperror265001_266001.txt 265002 httperror 265002 httperror 265002 httperror 265002 httperror 265003 httper

  • 玩转python爬虫之爬取糗事百科段子

    大家好,前面入门已经说了那么多基础知识了,下面我们做几个实战项目来挑战一下吧.那么这次为大家带来,Python爬取糗事百科的小段子的例子. 首先,糗事百科大家都听说过吧?糗友们发的搞笑的段子一抓一大把,这次我们尝试一下用爬虫把他们抓取下来. 本篇目标 抓取糗事百科热门段子 过滤带有图片的段子 实现每按一次回车显示一个段子的发布时间,发布人,段子内容,点赞数. 糗事百科是不需要登录的,所以也没必要用到Cookie,另外糗事百科有的段子是附图的,我们把图抓下来图片不便于显示,那么我们就尝试过滤掉有图

  • Python网络爬虫实例讲解

    聊一聊Python与网络爬虫. 1.爬虫的定义 爬虫:自动抓取互联网数据的程序. 2.爬虫的主要框架 爬虫程序的主要框架如上图所示,爬虫调度端通过URL管理器获取待爬取的URL链接,若URL管理器中存在待爬取的URL链接,爬虫调度器调用网页下载器下载相应网页,然后调用网页解析器解析该网页,并将该网页中新的URL添加到URL管理器中,将有价值的数据输出. 3.爬虫的时序图 4.URL管理器 URL管理器管理待抓取的URL集合和已抓取的URL集合,防止重复抓取与循环抓取.URL管理器的主要职能如下图

  • 用Python编写简单的微博爬虫

    先说点题外话,我一开始想使用Sina Weibo API来获取微博内容,但后来发现新浪微博的API限制实在太多,大家感受一下: 只能获取当前授权的用户(就是自己),而且只能返回最新的5条,WTF! 所以果断放弃掉这条路,改为『生爬』,因为PC端的微博是Ajax的动态加载,爬取起来有些困难,我果断知难而退,改为对移动端的微博进行爬取,因为移动端的微博可以通过分页爬取的方式来一次性爬取所有微博内容,这样工作就简化了不少. 最后实现的功能: 1.输入要爬取的微博用户的user_id,获得该用户的所有微

  • 简单实现python爬虫功能

    在我们日常上网浏览网页的时候,经常会看到一些好看的图片,我们就希望把这些图片保存下载,或者用户用来做桌面壁纸,或者用来做设计的素材. 我们最常规的做法就是通过鼠标右键,选择另存为.但有些图片鼠标右键的时候并没有另存为选项,还有办法就通过就是通过截图工具截取下来,但这样就降低图片的清晰度.好吧-!其实你很厉害的,右键查看页面源代码. 我们可以通过python 来实现这样一个简单的爬虫功能,把我们想要的代码爬取到本地.下面就看看如何使用python来实现这样一个功能. 一.获取整个页面数据  首先我

  • 玩转python爬虫之正则表达式

    面对大量杂乱的代码夹杂文字我们怎样把它提取出来整理呢?下面就开始介绍一个十分强大的工具,正则表达式! 1.了解正则表达式 正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符.及这些特定字符的组合,组成一个"规则字符串",这个"规则字符串"用来表达对字符串的一种过滤逻辑. 正则表达式是用来匹配字符串非常强大的工具,在其他编程语言中同样有正则表达式的概念,Python同样不例外,利用了正则表达式,我们想要从返回的页面内容提取出我们想要的内容就易如反掌

  • 玩转python爬虫之cookie使用方法

    之前一篇文章我们学习了爬虫的异常处理问题,那么接下来我们一起来看一下Cookie的使用. 为什么要使用Cookie呢? Cookie,指某些网站为了辨别用户身份.进行session跟踪而储存在用户本地终端上的数据(通常经过加密) 比如说有些网站需要登录后才能访问某个页面,在登录之前,你想抓取某个页面内容是不允许的.那么我们可以利用Urllib2库保存我们登录的Cookie,然后再抓取其他页面就达到目的了. 在此之前呢,我们必须先介绍一个opener的概念. 1.Opener 当你获取一个URL你

  • Python多线程爬虫简单示例

    python是支持多线程的,主要是通过thread和threading这两个模块来实现的.thread模块是比较底层的模块,threading模块是对thread做了一些包装的,可以更加方便的使用. 虽然python的多线程受GIL限制,并不是真正的多线程,但是对于I/O密集型计算还是能明显提高效率,比如说爬虫. 下面用一个实例来验证多线程的效率.代码只涉及页面获取,并没有解析出来. # -*-coding:utf-8 -*- import urllib2, time import thread

  • python实现爬虫统计学校BBS男女比例(一)

    一.项目需求 前言:BBS上每个id对应一个用户,他们注册时候会填写性别(男.女.保密三选一). 经过检查,BBS注册用户的id对应1-300000,大概是30万的用户 笔者想用Python统计BBS上有多少注册用户,以及这些用户的性别分布 顺带可以统计最近活动用户是多少,其中男.女.保密各占多少 活动用户的限定为"上次活动时间"为 2015年 二.最终结果 性别信息保存在文本里,一行表示一个用户的信息,各列分别表示 [行数,id(涂掉了),性别,最后活跃时间] 三.实现思路 用户性别

随机推荐