Numpy 中的矩阵求逆实例

1. 矩阵求逆

import numpy as np

a = np.array([[1, 2], [3, 4]]) # 初始化一个非奇异矩阵(数组)
print(np.linalg.inv(a)) # 对应于MATLAB中 inv() 函数

# 矩阵对象可以通过 .I 更方便的求逆
A = np.matrix(a)
print(A.I)

2. 矩阵求伪逆

import numpy as np

# 定义一个奇异阵 A
A = np.zeros((4, 4))
A[0, -1] = 1
A[-1, 0] = -1
A = np.matrix(A)
print(A)
# print(A.I) 将报错,矩阵 A 为奇异矩阵,不可逆
print(np.linalg.pinv(a))  # 求矩阵 A 的伪逆(广义逆矩阵),对应于MATLAB中 pinv() 函数

以上这篇Numpy 中的矩阵求逆实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Numpy 中的矩阵求逆实例

    1. 矩阵求逆 import numpy as np a = np.array([[1, 2], [3, 4]]) # 初始化一个非奇异矩阵(数组) print(np.linalg.inv(a)) # 对应于MATLAB中 inv() 函数 # 矩阵对象可以通过 .I 更方便的求逆 A = np.matrix(a) print(A.I) 2. 矩阵求伪逆 import numpy as np # 定义一个奇异阵 A A = np.zeros((4, 4)) A[0, -1] = 1 A[-1,

  • Numpy中stack(),hstack(),vstack()函数用法介绍及实例

    1.stack()函数 函数原型为:stack(arrays,axis=0),arrays可以传数组和列表.axis的含义我下面会讲解,我们先来看个例子,然后我会分析输出结果. import numpy as np a=[[1,2,3], [4,5,6]] print("列表a如下:") print(a) print("增加一维,新维度的下标为0") c=np.stack(a,axis=0) print(c) print("增加一维,新维度的下标为1&qu

  • 对numpy中数组元素的统一赋值实例

    Numpy中的数组整体处理赋值操作一直让我有点迷糊,很多时候理解的不深入.今天单独列写相关的知识点,进行总结一下. 先看两个代码片小例子: 例子1: In [2]: arr =np.empty((8,4)) In [3]: arr Out[3]: array([[ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0.,

  • Numpy中转置transpose、T和swapaxes的实例讲解

    利用Python进行数据分析时,Numpy是最常用的库,经常用来对数组.矩阵等进行转置等,有时候用来做数据的存储. 在numpy中,转置transpose和轴对换是很基本的操作,下面分别详细讲述一下,以免自己忘记. In [1]: import numpy as np In [2]: arr=np.arange(16).reshape(2,2,4) In [3]: arr Out[3]: array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7]], [[ 8, 9, 10, 11

  • numpy中的高维数组转置实例

    numpy中的ndarray很适合数组运算 transpose是用来转置的一个函数,很容易让人困惑,其实它是对矩阵索引顺序的一次调整.原先矩阵是一个三维矩阵,索引顺序是x,y,z,角标分别是0.1.2,经过上图(1,0,2)调整后就成了y,x,z. 理解了这些,那么swapaxes方法也就不难理解了 以上这篇numpy中的高维数组转置实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们. 您可能感兴趣的文章: Numpy中转置transpose.T和swapaxes的

  • numpy中的delete删除数组整行和整列的实例

    numpy的delete是可以删除数组的整行和整列的,下面简单介绍和举例说明delete函数用法: numpy.delete(arr, obj, axis=None) 参数: arr:输入数组 obj:切片,整数,表示哪个子数组要被移除 axis:删除子数组的轴 axis = 0:表示删除数组的行 axis = 1:表示删除数组的列 axis = None:表示把数组按一维数组平铺在进行索引删除 返回:一个新的子数组 x = array([[1,2,3], [4,5,6], [7,8,9]])

  • 基于Python中numpy数组的合并实例讲解

    Python中numpy数组的合并有很多方法,如 - np.append() - np.concatenate() - np.stack() - np.hstack() - np.vstack() - np.dstack() 其中最泛用的是第一个和第二个.第一个可读性好,比较灵活,但是占内存大.第二个则没有内存占用大的问题. 方法一--append parameters introduction arr 待合并的数组的复制(特别主页是复制,所以要多耗费很多内存) values 用来合并到上述数组

  • 在python Numpy中求向量和矩阵的范数实例

    np.linalg.norm(求范数):linalg=linear(线性)+algebra(代数),norm则表示范数. 函数参数 x_norm=np.linalg.norm(x, ord=None, axis=None, keepdims=False) ①x: 表示矩阵(也可以是一维) ②ord:范数类型 向量的范数: 矩阵的范数: ord=1:列和的最大值 ord=2:|λE-ATA|=0,求特征值,然后求最大特征值得算术平方根 ord=∞:行和的最大值 ③axis:处理类型 axis=1表

  • Numpy中矩阵matrix读取一列的方法及数组和矩阵的相互转换实例

    Numpy matrix 必须是2维的,但是 numpy arrays (ndarrays) 可以是多维的(1D,2D,3D····ND),matrix是Array的一个小的分支,包含于Array. import numpy as np >>> m = np.mat([[1,2],[3,4]]) >>> m[0] #读取一行 matrix([[1, 2]]) >>> m[:,0] #读取一列 matrix([[1], [3]]) numpy中数组和矩阵

  • numpy中矩阵合并的实例

    python中科学计算包numpy中矩阵的合并,需要用到如下两个函数: 列合并:np.column_stack() ,其中函数参数为一个tuple 行合并:np.row_stack(),其中函数参数为一个tuple >>> import numpy as np >>> a = np.arange(8).reshape(4, -1) >>> print(a) [[0 1] [2 3] [4 5] [6 7]] >>> b = np.ar

随机推荐