详解C语言的结构体中成员变量偏移问题

c语言中关于结构体的位置偏移原则简单,但经常忘记,做点笔记以是个记忆的好办法

原则有三个:

a.结构体中的所有成员其首地址偏移量必须为器数据类型长度的整数被,其中第一个成员的首地址偏移量为0,

例如,若第二个成员类型为int,则其首地址偏移量必须为4的倍数,否则就要“首部填充”;以此类推

b.结构体所占的总字节数即sizeof()函数返回的值必须是最大成员的长度的整数倍,否则要进行“末尾填充”;

c.若结构体A将结构体B作为其成员,则结构体B存储的首地址的偏移量必须为B中所含成员数据长度最大值的整数倍,

如若B中成员为int,double,char,则B的偏移量要为8的整数倍;否则进行“中间填充”。

相信大家在c语言程序开发的过程一定都使用过结构体,那么不知你对结构体中成员变量偏移这块是如何理解的?本文将和大家一起分享下,本人最近关于c语言中结构体偏移的一些思考和总结。

示例1

我们先来定义一下需求:

已知结构体类型定义如下:

struct node_t{
 char a;
 int b;
 int c;
};

且结构体1Byte对齐

#pragma pack(1)

求:

结构体struct node_t中成员变量c的偏移。

注:这里的偏移量指的是相对于结构体起始位置的偏移量。

看到这个问题的时候,我相信不同的人脑中浮现的解决方法可能会有所差异,下面我们分析以下几种可能的解法:

方法1

如果你对c语言的库函数比较熟悉的话,那么你第一个想到的肯定是offsetof函数(其实只是个宏而已,先姑且这样叫着吧),我们man 3 offsetof查看函数原型如下:

 #include <stddef.h>

  size_t offsetof(type, member);

有了上述的库函数,我们用一行代码就可以搞定:

offsetof(struct node_t, c);

当然这并非本文探讨的重点,请继续阅读。

方法2

当我们对c语言的库函数不熟悉的时候,此时也不要着急,我们依然可以使用我们自己的方法来解决问题。

最直接的思路是:【结构体成员变量c的地址】 减去 【结构体起始地址】

我们先来定义一个结构体变量node:

struct node_t node;

接着来计算成员变量c的偏移量:

(unsigned long)(&(node.c)) - (unsigned long)(&node)

&(node.c)为结构体成员变量c的地址,并强制转化为unsigned long;

&node为结构体的起始地址,也强制转化为unsigned long;

最后我们将上述两值相减,得到成员变量c的偏移量;

方法3

按照方法2的思路我们在不借助库函数的情况下,依然可以得到成员变量c的偏移量。但作为程序员,我们应该善于思考,是不是可以针对上面的代码做一些改进,使我们的代码变得更简洁一些?在做具体的改进之前,我们应该分析方法2存在哪些方面的问题。

相信不用我多说,细心的你一定已经察觉到,方法2中最主要的一个问题是我们自定义了一个结构体变量node,虽然题目中并未限制我们可以自定义变量,但当我们遇到比较严且题目中不允许自定义变量的时候,此时我们就要思考新的解决方法。

在探讨新的解决方法之前,我们先来探讨一个有关偏移的小问题:

小问题

这是一道简单的几何问题,假设在座标轴上由A点移动到B点,如何计算B相对于A的偏移?这个问题对于我们来说是非常的简单,可能大部分人都会脱口而出并得到答案为B-A。

那么这个答案是否完全准确呢?比较严谨的你觉得显然不是,原因在于,当A为坐标原点即A=0的时候,上述答案B-A就直接简化为B了。

这个小小的简单的问题,对于我们来说有什么启示呢?

我们结合方法2的思路和上述的小问题,是不是很快就得到了下面的关联:

(unsigned long)(&(node.c)) - (unsigned long)(&node)

B - A
我们小问题的思路是当A为坐标原点的时候,B-A就简化为B了,那么对应到我们的方法2,当node的内存地址为0即(&node==0)的时候,上面的代码可简化为:

(unsigned long)(&(node.c))

由于node内存地址==0了,所以

node.c  //结构体node中成员变量c

我们就可以使用另外一种方式来表达了,如下:

((struct node_t *)0)->c

上述代码应该比较好理解,由于我们知道结构体的内存地址编号为0,所以我们就可以直接通过内存地址的方式来访问该结构体的成员变量,相应的代码的含义就是 获取内存地址编号为0的结构体struct node_t的成员变量c。

注:此处只是利用了编译器的特性来计算结构体偏移,并未对内存地址0有任何操作,有些同学对此可能还有些疑问,详细的了解该问题可参考关于c语言结构体成员变量访问方式的一点思考。

此时,我们的偏移求法就消除了struct node_t node这个自定义变量,直接一行代码解决,:

(unsigned long)(&(((struct node_t *)0)->c))

上述的代码相对于方法2是不是更简洁了一些。

这里我们将上面的代码功能定义为一个宏,该宏的作用是用来计算某结构体内成员变量的偏移(后面的示例会使用该宏):

#define OFFSET_OF(type, member) (unsigned long)(&(((type *)0)->member))

使用上面的宏,就可以直接得到成员变量c在结构体struct node_t中的偏移为:

OFFSET_OF(struct node_t, c)

示例2

和示例1一样,我们先定义需求如下:

已知结构体类型定义如下:

struct node_t{
 char a;
 int b;
 int c;
};

int *p_c,该指针指向struct node_t x的成员变量c

结构体1Byte对齐

#pragma pack(1)
求:

结构体x的成员变量b的值?

拿到这个问题的时候,我们先做一下简单的分析,题目的意思是根据一个指向某结构体成员变量的指针,如何求该结构体的另外一个成员变量的值。

那么可能的几种解法有:

方法1

由于我们知道结构体是1Byte对齐的,所以这道题最简单的解法是:

*(int *)((unsigned long)p_c - sizeof(int))
上述代码很简单,成员变量c的地址减去sizeof(int)从而得到成员变量b的地址,然后再强制转换为int *,最后再取值最终得到成员变量b的值;

方法2

方法1的代码虽然简单,但扩展性不够好。我们希望通过p_c直接得到指向该结构体的指针p_node,然后通过p_node访问该结构体的任意成员变量了。

由此我们得到计算结构体起始地址p_node的思路为:

【成员变量c的地址p_c】减去【c在结构体中的偏移】

由示例1,我们得到结构体struct node_t中成员变量c的偏移为:

(unsigned long)&(((struct node_t *)0)->c)

所以我们得到结构体的起始地址指针p_node为:

(struct node_t *)((unsigned long)p_c - (unsigned long)(&((struct node_t *)0)->c))

我们也可以直接使用示例1中定义的OFFSET_OF宏,则上面的代码变为:

(struct node_t *)((unsigned long)p_c - OFFSET_OF(struct node_t, c))

最后我们就可以使用下面的代码来获取成员变量a,b的值:

p_node->a

p_node->b

我们同样将上述代码的功能定义为如下宏:

#define STRUCT_ENTRY(ptr, type, member) (type *)((unsigned long)(ptr)-OFFSET_OF(type, member))

该宏的功能是通过结构体任意成员变量的指针来获得指向该结构体的指针。

我们使用上面的宏来修改之前的代码如下:

STRUCT_ENTRY(p_c, struct node_t, c)

p_c为指向结构体struct node_t成员变量c的指针;

struct node_t结构体类型;

c为p_c指向的成员变量;

注:

上述示例中关于地址运算的一些说明:

int a = 10;
int * p_a = &a;

p_a == 0x95734104;

以下为编译器计算的相关结果:

p_a + 10 == p_a + sizeof(int)*10 =0x95734104 + 4*10 = 0x95734144

(unsigned long)p_a + 10 == 0x95734104+10 = 0x95734114

(char *)p_a + 10 == 0x95734104 + sizeof(char)*10 = 0x95734114

从上述三种情况,相信你应该能体会到我所要表达的意思了。(注:后续某博文将从编译器的角度对该问题进行详细的阐述)

结论

本文通过几个示例描述了c语言结构体有关偏移的一些有意思的事情,希望能够对你有所帮助。为什么会有上述思考,相信有些同学已经看出一些端倪,这也正是后续博文将要描述的主题。

如文中有错误之处,欢迎指出。

(0)

相关推荐

  • C语言中交换int型变量的值及转换为字符数组的方法

    不使用其他变量交换两个整型的值: #include <stdio.h> void main(){ int a = 3; int b = 4; a = a ^ b;//使用异或交换 b = b ^ a; a = a ^ b; printf("%d, %d\n", a, b); a = a - b;//使用加减交换 b = a + b; a = b - a; printf("%d, %d\n", a, b); a ^= b ^= a ^= b; printf

  • 用C语言的泛型实现交换两个变量值

    第一种,最常用的是创建一个中间变量来循环交换它们的值: T a = ...; T b = ...; . T tmp = a; a = b; a = tmp; 我们称这种策略p99_swap1.在这里,编译器必须严格实现三个任务的顺序,否则,由此程序产生的结果将是不正确的. 第二种,叫它p99_swap2,试图做类似的事情,但放松一些顺序约束: T a = ...; T b = ...; . T tmpa = a; T tmpb = b; a = tmpb; b = tmpa; 用更多的资源(栈空

  • C语言 全局变量和局部变量详解及实例

    C语言 全局变量和局部变量详解 核心内容: 1.局部变量和全局变量 变量按照作用域分为:全局变量和局部变量 全局变量的作用域:从定义位置开始到下面整个程序结束. 局部变量的作用域:在一个函数内部定义的变量只能在本函数内部进行使用. OK,上面的效果用Java语言实现一下: public class App1 { public static int k = 10;//相当于全局变量 public static void main(String[] args) { int i = 10;//局部变量

  • C语言变量类型与输出控制用法实例教程

    本文实例讲述了C语言变量类型与输出控制用法,有助于读者很好的对其进行总结与归纳.该实例分享给大家供大家参考借鉴之用.具体如下: 完整实例代码如下: /********************************************** **<Beginning C 4th Edition>Notes codes ** Created by Goopand ** Compiler: gcc 4.7.0 *******************************************

  • C语言中变量与其内存地址对应的入门知识简单讲解

    先来理解理解内存空间吧.请看下图: 如上图所示,内存只不过是一个存放数据的空间,就好像我的看电影时的电影院中的座位一样.电影院中的每个座位都要编号,而我们的内存要存放各种各样的数据,当然我们要知道我们的这些数据存放在什么位置吧.所以内存也要象座位一样进行编号了,这就是我们所说的内存编址.座位可以是遵循"一个座位对应一个号码"的原则,从"第1号"开始编号.而内存则是按一个字节接着一个字节的次序进行编址,如上图所示.每个字节都有个编号,我们称之为内存地址.好了,我说了这

  • C语言中判断int,long型等变量是否赋值的方法详解

    当然,如果你不赋值给局部变量,这样会导致整个程序的崩溃,因为,它的内容被系统指向了垃圾内存.下面我们看一段代码: 复制代码 代码如下: #include <stdio.h>#include <string.h>#include <stdlib.h>int globle_value;int my_sum(int value1, int value2);long my_sub(long value1, long value2);int main(void){ int aut

  • C语言基础知识变量的作用域和存储方式详细介绍

    变量的作用域和存储方式 1.简述变量按作用域的分类 变量按作用域分:分为全局变量和局部变量 全局变量:在所有函数外部定义的变量叫做全局变量 全局变量的使用范围:从定义位置开始到下面整个程序结束 局部变量:在一个函数内部定义的变量或者函数的形式参数统称为局部变量 局部变量的使用范围:在函数内部定义的变量只能在本函数内部进行使用 2.简述变量按存储方式的分类 静态变量 自动变量 寄存器变量[寄存器就是cpu内部可以存储数据的一些硬件东西] 3.简述全局变量和局部变量命名冲突的问题 1>在一个函数内部

  • C语言中结构体偏移及结构体成员变量访问方式的问题讨论

    c语言结构体偏移 示例1 我们先来定义一下需求: 已知结构体类型定义如下: struct node_t{ char a; int b; int c; }; 且结构体1Byte对齐 #pragma pack(1) 求: 结构体struct node_t中成员变量c的偏移. 注:这里的偏移量指的是相对于结构体起始位置的偏移量. 看到这个问题的时候,我相信不同的人脑中浮现的解决方法可能会有所差异,下面我们分析以下几种可能的解法: 方法1 如果你对c语言的库函数比较熟悉的话,那么你第一个想到的肯定是of

  • C语言 指针变量作为函数参数详解

    在C语言中,函数的参数不仅可以是整数.小数.字符等具体的数据,还可以是指向它们的指针.用指针变量作函数参数可以将函数外部的地址传递到函数内部,使得在函数内部可以操作函数外部的数据,并且这些数据不会随着函数的结束而被销毁. 像数组.字符串.动态分配的内存等都是一系列数据的集合,没有办法通过一个参数全部传入函数内部,只能传递它们的指针,在函数内部通过指针来影响这些数据集合. 有的时候,对于整数.小数.字符等基本类型数据的操作也必须要借助指针,一个典型的例子就是交换两个变量的值. 有些初学者可能会使用

  • C语言 常量,变量及数据详细介绍

    一.数据 图片文字等都是数据,在计算机中以0和1存储. (一)分类 数据分为静态数据和动态数据. ①. 静态数据:一些永久性的的数据,一般存储在硬盘中,只要硬盘没坏数据都是存在的.一般以文件的形式存储在硬盘上,电脑关机重启后依然存在. ②. 动态数据:程序运行过程中,动态产生的的临时数据,一般存储在内存中,内存的存储空间一般较小,计算机关闭后这些数据就会被清除.软件或者电脑关闭则这些临时数据会被清除. ③. 静态数据和动态数据可以转换. ④. 注意:为什么不把动态数据存放到硬盘?因为直接访问内存

  • c语言全局变量和局部变量问题及解决汇总

    1.局部变量能否和全局变量重名? 答:能,局部会屏蔽全局.要用全局变量,需要使用"::" 局部变量可以与全局变量同名,在函数内引用这个变量时,会用到同名的局部变量,而不会用到全局变量.对于有些编译器而言,在同一个函数内可以定义多个同名的局部变量,比如在两个循环体内都定义一个同名的局部变量,而那个局部变量的作用域就在那个循环体内. 2.如何引用一个已经定义过的全局变量? 答:extern 可以用引用头文件的方式,也可以用extern关键字,如果用引用头文件方式来引用某个在头文件中声明的全

  • 深入探讨C语言中局部变量与全局变量在内存中的存放位置

    C语言中局部变量和全局变量变量的存储类别(static,extern,auto,register) 1.局部变量和全局变量在讨论函数的形参变量时曾经提到,形参变量只在被调用期间才分配内存单元,调用结束立即释放.这一点表明形参变量只有在函数内才是有效的,离开该函数就不能再使用了.这种变量有效性的范围称变量的作用域.不仅对于形参变量,C语言中所有的量都有自己的作用域.变量说明的方式不同,其作用域也不同.C语言中的变量,按作用域范围可分为两种,即局部变量和全局变量.1.1局部变量局部变量也称为内部变量

  • C语言中通过LUA API访问LUA脚本变量的简单例子

    1.简介 这一节介绍一些关于栈操作.数据类型判断的LUA API,可以使用这些函数获得脚本中的变量值. 2.步骤 编写 test01.lua 脚本,在VS2003中创建控制台C++程序并正确配置,执行查看结果,修改test02.lua脚本后查看执行结果 3.测试脚本 以下是用来测试的lua脚本 复制代码 代码如下: function plustwo(x)          local a = 2;          return x+a; end; rows = 6; cols = plustw

  • 在C语言编程中使用变量的基础教程

    C语言在明面上将数的变量分为两类,整型变量以及浮点数,对应着现实世界的整数和小数. 首先是整数,使用了这么多的C语言之后,每当在使用整数之时都会将其想象成二进制的存在,而不是十进制.原因在于,这是程序的本质所在,稍有研究编译器工作原理的都会发现,在编译器处理乘法乃至除法的时候,优秀的编译器总会想方设法的加快程序的速度,毫无疑问在所有运算中移位运算是最快速的"乘法"以及"除法": 1<<2 == 4 ,8>>2 == 2 而正常一个乘法相当于十

随机推荐