Java单利模式与多线程总结归纳

概念:

  java中单例模式是一种常见的设计模式,单例模式分三种:懒汉式单例、饿汉式单例、登记式单例三种。

  单例模式有一下特点:

  1、单例类只能有一个实例。

  2、单例类必须自己创建自己的唯一实例。

  3、单例类必须给所有其他对象提供这一实例。

  单例模式确保某个类只有一个实例,而且自行实例化并向整个系统提供这个实例。在计算机系统中,线程池、缓存、日志对象、对话框、打印机、显卡的驱动程序对象常被设计成单例。这些应用都或多或少具有资源管理器的功能。每台计算机可以有若干个打印机,但只能有一个Printer Spooler,以避免两个打印作业同时输出到打印机中。每台计算机可以有若干通信端口,系统应当集中管理这些通信端口,以避免一个通信端口同时被两个请求同时调用。总之,选择单例模式就是为了避免不一致状态,避免政出多头。

这里主要详细介绍两种:懒汉式和饿汉式

一、立即加载/饿汉式

在调用方法前,实例就已经被创建,代码:

package com.weishiyao.learn.day.singleton.ep;
public class MyObject {
// 立即加载方式==恶汉模式
private static MyObject myObject = new MyObject();
private MyObject() {
}
public static MyObject getInstance() {
// 此代码版本为立即加载
// 此版本代码的缺点是不能有其他实例变量
// 因为getInstance()方法没有同步
// 所以有可能出现非线程安全的问题
return myObject;
}
}

创建线程类

package com.weishiyao.learn.day.singleton.ep;
public class MyThread extends Thread {
@Override
public void run() {
System.out.println(MyObject.getInstance().hashCode());
}
}

创建运行类

package com.weishiyao.learn.day.singleton.ep;
public class Run {
public static void main(String[] args) {
MyThread t = new MyThread();
MyThread t = new MyThread();
MyThread t = new MyThread();
t.start();
t.start();
t.start();
}
}

运行结果

1 167772895
2 167772895
3 167772895

hashCode是同一个值,说明对象也是同一个,说明实现了立即加载型的单利模式

二、延迟加载/懒汉式

在调用方法以后实例才会被创建,实现方案可以是将实例化放到无参构造函数当中,这样只有当调用的时候才会创建对象的实例,代码:

package com.weishiyao.learn.day.singleton.ep;
public class MyObject {
private static MyObject myObject;
private MyObject() {
}
public static MyObject getInstance() {
// 延迟加载
if (myObject != null) {
} else {
myObject = new MyObject();
}
return myObject;
}
}

创建线程类

package com.weishiyao.learn.day.singleton.ep;
public class MyThread extends Thread {
@Override
public void run() {
System.out.println(MyObject.getInstance().hashCode());
}
} 

创建运行类

package com.weishiyao.learn.day8.singleton.ep2;
public class Run {
public static void main(String[] args) {
MyThread t1 = new MyThread();
t1.start();
}
} 

运行结果

1 167772895

这样虽然取出了一个对象的实例,但是如果在多线程的环境中,就会出现多个实例的情况,这样就不是单例模式了

运行测试类

package com.weishiyao.learn.day.singleton.ep;
public class Run {
public static void main(String[] args) {
MyThread t = new MyThread();
MyThread t = new MyThread();
MyThread t = new MyThread();
MyThread t = new MyThread();
MyThread t = new MyThread();
t.start();
t.start();
t.start();
t.start();
t.start();
}
}

运行结果

1 980258163
2 1224717057
3 1851889404
4 188820504
5 1672864109

既然出现问题,就要解决问题,在懒汉模式中的多线程的解决方案,代码:

第一种方案,最常见的,加synchronized,而synchronized可以加到不同的位置

第一种,方法锁

package com.weishiyao.learn.day.singleton.ep;
public class MyObject {
private static MyObject myObject;
private MyObject() {
}
synchronized public static MyObject getInstance() {
// 延迟加载
try {
if (myObject != null) {
} else {
// 模拟在创建对象之前做一些准备性的工作
Thread.sleep(); myObject = new MyObject(); }
} catch (InterruptedException e) {
e.printStackTrace();
}
return myObject;
}
} 

这种synchronized的同步方案导致效率过于低下,整个方法都被锁住

第二种synchronized使用方案

package com.weishiyao.learn.day.singleton.ep;
public class MyObject {
private static MyObject myObject;
private MyObject() {
}
public static MyObject getInstance() {
// 延迟加载
try {
synchronized (MyObject.class) {
if (myObject != null) {
} else {
// 模拟在创建对象之前做一些准备性的工作
Thread.sleep();
myObject = new MyObject();
}
}
} catch (InterruptedException e) {
e.printStackTrace();
}
return myObject;
}
}

这种方法效率一样很低,方法内的所有代码都被锁住,只需要锁住关键代码就好,第三种synchronized使用方案

package com.weishiyao.learn.day.singleton.ep;
public class MyObject {
private static MyObject myObject;
private MyObject() {
}
public static MyObject getInstance() {
// 延迟加载
try {
if (myObject != null) {
} else {
// 模拟在创建对象之前做一些准备性的工作
Thread.sleep();
synchronized (MyObject.class) {
myObject = new MyObject();
}
}
} catch (InterruptedException e) {
e.printStackTrace();
}
return myObject;
}
} 

这么写看似是最优方案了,但是,运行一下结果,发现,其实它是非线程安全的

结果:

1 1224717057
2 971173439
3 1851889404
4 1224717057
5 1672864109
Why?

虽然锁住了对象创建的语句,每次只能有一个线程完成创建,但是,当第一个线程进来创建完成Object对象以后,第二个线程进来还是可以继续创建的,因为我们紧紧只锁住了创建语句,这个问题解决方案

package com.weishiyao.learn.day.singleton.ep;
public class MyObject {
private static MyObject myObject;
private MyObject() {
}
public static MyObject getInstance() {
// 延迟加载
try {
if (myObject != null) {
} else {
// 模拟在创建对象之前做一些准备性的工作
Thread.sleep();
synchronized (MyObject.class) {
if (myObject == null) {
myObject = new MyObject();
}
}
}
} catch (InterruptedException e) {
e.printStackTrace();
}
return myObject;
}
}

只需要在锁里面再添加一个判断,就可以保证单例了,这个是DCL双检查机制

结果如下:

1 1224717057
2 1224717057
3 1224717057
4 1224717057
5 1224717057

三、使用内置静态类实现单例

主要代码

package com.weishiyao.learn.day.singleton.ep;
public class MyObject {
// 内部类方式
private static class MyObjectHandler {
private static MyObject myObject = new MyObject();
}
public MyObject() {
}
public static MyObject getInstance() {
return MyObjectHandler.myObject;
}
}

线程类代码

package com.weishiyao.learn.day.singleton.ep;
public class MyThread extends Thread {
@Override
public void run() {
System.out.println(MyObject.getInstance().hashCode());
}
}

运行类

package com.weishiyao.learn.day.singleton.ep;
public class Run {
public static void main(String[] args) {
MyThread t = new MyThread();
MyThread t = new MyThread();
MyThread t = new MyThread();
MyThread t = new MyThread();
MyThread t = new MyThread();
t.start();
t.start();
t.start();
t.start();
t.start();
}
}

结果

1851889404
1851889404
1851889404
1851889404
1851889404

通过内部静态类,得到了线程安全的单例模式

四、序列化和反序列化单例模式

内置静态类可以达到线程安全的问题,但如果遇到序列化对象时,使用默认方式得到的结果还是多例的

MyObject代码

package com.weishiyao.learn.day8.singleton.ep5;
import java.io.Serializable;
public class MyObject implements Serializable {
/**
*
*/
private static final long serialVersionUID = 888L;
// 内部类方式
private static class MyObjectHandler {
private static MyObject myObject = new MyObject();
}
public MyObject() {
}
public static MyObject getInstance() {
return MyObjectHandler.myObject;
}
// protected MyObject readResolve() {
// System.out.println("调用了readResolve方法!");
// return MyObjectHandler.myObject;
// }
}

业务类

package com.weishiyao.learn.day.singleton.ep;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
public class SaveAndRead {
public static void main(String[] args) {
try {
MyObject myObject = MyObject.getInstance();
FileOutputStream fosRef = new FileOutputStream(new File("myObjectFile.txt"));
ObjectOutputStream oosRef = new ObjectOutputStream(fosRef);
oosRef.writeObject(myObject);
oosRef.close();
fosRef.close();
System.out.println(myObject.hashCode());
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
FileInputStream fisRef;
try {
fisRef = new FileInputStream(new File("myObjectFile.txt"));
ObjectInputStream iosRef = new ObjectInputStream(fisRef);
MyObject myObject = (MyObject) iosRef.readObject();
iosRef.close();
fisRef.close();
System.out.println(myObject.hashCode());
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
} catch (ClassNotFoundException e) {
e.printStackTrace();
}
}
} 

结果

1 970928725
2 1099149023

两个不同的hashCode,证明并不是同一个对象,解决方案,添加下面这段代码

  protected MyObject readResolve() {
System.out.println("调用了readResolve方法!");
return MyObjectHandler.myObject;
}

在反序列化的时候调用,可以得到同一个对象

System.out.println(myObject.readResolve().hashCode());

结果

1 1255301379
2 调用了readResolve方法!
3 1255301379

相同的hashCode,证明得到了同一个对象

五、使用static代码块实现单例

静态代码块中的代码在使用类的时候就已经执行了,所以可以应用静态代码快这个特性来实现单利模式

MyObject类

package com.weishiyao.learn.day.singleton.ep;
public class MyObject {
private static MyObject instance = null;
private MyObject() {
super();
}
static {
instance = new MyObject();
}
public static MyObject getInstance() {
return instance;
}
}

线程类

package com.weishiyao.learn.day.singleton.ep;
public class MyThread extends Thread {
@Override
public void run() {
for (int i = ; i < ; i++) {
System.out.println(MyObject.getInstance().hashCode());
}
}
}

运行类

package com.weishiyao.learn.day.singleton.ep;
public class Run {
public static void main(String[] args) {
MyThread t = new MyThread();
MyThread t = new MyThread();
MyThread t = new MyThread();
MyThread t = new MyThread();
MyThread t = new MyThread();
t.start();
t.start();
t.start();
t.start();
t.start();
}
}

运行结果:

1 1678885403
2 1678885403
3 1678885403
4 1678885403
5 1678885403
6 1678885403
7 1678885403
8 1678885403
9 1678885403
10 1678885403
11 1678885403
12 1678885403
13 1678885403
14 1678885403
15 1678885403
16 1678885403
17 1678885403
18 1678885403
19 1678885403
20 1678885403
21 1678885403
22 1678885403
23 1678885403
24 1678885403
25 1678885403

通过静态代码块只执行一次的特性也成功的得到了线程安全的单例模式

六、使用enum枚举数据类型实现单例模式

枚举enum和静态代码块的特性类似,在使用枚举时,构造方法会被自动调用,也可以用来实现单例模式

MyObject类

package com.weishiyao.learn.day.singleton.ep;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
public enum MyObject {
connectionFactory;
private Connection connection;
private MyObject() {
try {
System.out.println("调用了MyObject的构造");
String url = "jdbc:mysql://...:/wechat_?useUnicode=true&characterEncoding=UTF-";
String name = "root";
String password = "";
String driverName = "com.mysql.jdbc.Driver";
Class.forName(driverName);
connection = DriverManager.getConnection(url, name, password);
} catch (ClassNotFoundException e) {
e.printStackTrace();
} catch (SQLException e) {
e.printStackTrace();
}
}
public Connection getConnection() {
return connection;
}
}

线程类

package com.weishiyao.learn.day.singleton.ep;
public class MyThread extends Thread {
@Override
public void run() {
for (int i = ; i < ; i++) {
System.out.println(MyObject.connectionFactory.getConnection().hashCode());
}
}
}

运行类

package com.weishiyao.learn.day.singleton.ep;
public class Run {
public static void main(String[] args) {
MyThread t = new MyThread();
MyThread t = new MyThread();
MyThread t = new MyThread();
MyThread t = new MyThread();
MyThread t = new MyThread();
t.start();
t.start();
t.start();
t.start();
t.start();
}
}

运行结果

1 调用了MyObject的构造
2 56823666
3 56823666
4 56823666
5 56823666
6 56823666
7 56823666
8 56823666
9 56823666
10 56823666
11 56823666
12 56823666
13 56823666
14 56823666
15 56823666
16 56823666
17 56823666
18 56823666
19 56823666
20 56823666
21 56823666
22 56823666
23 56823666
24 56823666
25 56823666
26 56823666

上面这种写法将枚举类暴露了,违反了“职责单一原则”,可以使用一个类将枚举包裹起来

package com.weishiyao.learn.day.singleton.ep;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
public class MyObject {
public enum MyEnumSingleton {
connectionFactory;
private Connection connection;
private MyEnumSingleton() {
try {
System.out.println("调用了MyObject的构造");
String url = "jdbc:mysql://...:/wechat_?useUnicode=true&characterEncoding=UTF-";
String name = "root";
String password = "";
String driverName = "com.mysql.jdbc.Driver";
Class.forName(driverName);
connection = DriverManager.getConnection(url, name, password);
} catch (ClassNotFoundException e) {
e.printStackTrace();
} catch (SQLException e) {
e.printStackTrace();
}
}
public Connection getConnection() {
return connection;
}
}
public static Connection getConnection() {
return MyEnumSingleton.connectionFactory.getConnection();
}
}

更改线程代码

package com.weishiyao.learn.day.singleton.ep;
public class MyThread extends Thread {
@Override
public void run() {
for (int i = ; i < ; i++) {
System.out.println(MyObject.getConnection().hashCode());
}
}
}

结果

1 调用了MyObject的构造
2 1948356121
3 1948356121
4 1948356121
5 1948356121
6 1948356121
7 1948356121
8 1948356121
9 1948356121
10 1948356121
11 1948356121
12 1948356121
13 1948356121
14 1948356121
15 1948356121
16 1948356121
17 1948356121
18 1948356121
19 1948356121
20 1948356121
21 1948356121
22 1948356121
23 1948356121
24 1948356121
25 1948356121
26 1948356121

以上总结了单利模式与多线程结合时遇到的各种情况和解决方案,以供以后使用时查阅。

(0)

相关推荐

  • Java多线程模式之Balking模式详解

    本文实例讲述了Java多线程模式之Balking模式.分享给大家供大家参考,具体如下: 当现在不适合这个操作,或是没有必要进行这个操作时就直接放弃这个操作而回去.这个就是Balking模式 例如王某在餐厅吃饭,当王某需要点餐时喊服务员需要点餐.当服务员A和B都注意到了王某点餐的示意,这时服务员B看到服务员A已经去响应了王某的点餐请求,所以服务员B就不会再过去响应王某的点餐请求. 程序示例: 程序的需求是模拟一个自动保存的功能.自动保存是为了预防计算机忽然断电或则软件突然出错的危险,定期将数据保存

  • Java中Builder模式的实现详解

    前言 本文主要给大家介绍了关于如何实现Builder模式,大家在构建大对象时,对象的属性比较多,我们可以采用一个构造器或者使用空的构造器构造,然后使用setter方法去设置.在使用者使用这些方法时,会很多冗长的构造器参数列表或者setter方法.我们可以使用Builder模式来简化大对象的构造,提高代码的简洁性,同时提高使用者的编码体验. 下面我们将介绍在Java8之前.使用极简代码利器Lombok.Java8之后的Builder模式. Pre Java8 我们先来看下在Java8之前的Buil

  • java 单例模式和工厂模式实例详解

    单例模式根据实例化对象时机的不同分为两种:一种是饿汉式单例,一种是懒汉式单例. 私有的构造方法 指向自己实例的私有静态引用 以自己实例为返回值的静态的公有的方法 饿汉式单例 public class Singleton { private static Singleton singleton = new Singleton(); private Singleton(){} public static Singleton getInstance(){ return singleton; } } 懒

  • java多线程之线程安全的单例模式

    概念: java中单例模式是一种常见的设计模式,单例模式分三种:懒汉式单例.饿汉式单例.登记式单例三种. 单例模式有一下特点: 1.单例类只能有一个实例. 2.单例类必须自己创建自己的唯一实例. 3.单例类必须给所有其他对象提供这一实例. 单例模式确保某个类只有一个实例,而且自行实例化并向整个系统提供这个实例.在计算机系统中,线程池.缓存.日志对象.对话框.打印机.显卡的驱动程序对象常被设计成单例.这些应用都或多或少具有资源管理器的功能.每台计算机可以有若干个打印机,但只能有一个Printer

  • java 迭代器模式实例详解

    java 迭代器模式实例详解 今天来818设计模式中的迭代器模式,也是java中Stack,List,Set等接口以及数组这个数据结构都会使用的一种模式. 首先,为什么使用迭代器模式,目的就是通过一个通用的迭代方法,隐藏stack,list,set以及数组中不同的遍历细节.也就是说,我不想让那些调用我的遍历容器的方法的人知道我到底是怎么一个一个的获取这些元素的(stack的pop,list的get,数组的array[i]),我只想让他知道他能 通过一个迭代器Iterator或者通过一个for e

  • Java代理模式详细解析

    代理模式是我们比较常用的设计模式之一.其中新思想是为了提供额外的处理或者不同的操作而在实际对象与调用者之间插入一个代理对象.这些额外的操作通常需要与实际对象进行通信,代理模式一般涉及到的角色有: 抽象角色:声明真实对象和代理对象的共同接口: 代理角色:代理对象角色内部含有对真实对象的引用,从而可以操作真实对象,同时代理对象提供与真实对象相同的接口以便在任何时刻都能代替真实对象.同时,代理对象可以在执行真实对象操作时,附加其他的操作,相当于对真实对象进行封装. 真实角色:代理角色所代表的真实对象,

  • Java责任链模式定义与用法分析

    本文实例讲述了Java责任链模式定义与用法.分享给大家供大家参考,具体如下: 使很多对象都有处理请求的机会,从而避免请求的发送者和接受者之间的耦合关系.将这些对象连成一条链,并沿着这条链传递该请求,直到有一个对象处理它为止 责任链模式主要包括以下几个角色 1.处理者:处理者是一个接口,负责规定具体处理者处理用户请求的方法以及具体处理者设置后继处理对象的方法 2.具体处理者:具体处理者是实现处理接口的类的实例,具体处理者通过调用处理接口规定的方法处理用户的请求,既在接到用户的请求后,处理者将调用接

  • Java多线程中的单例模式两种实现方式

    Java多线程中的单例模式 一.在多线程环境下创建单例 方式一: package com.ietree.multithread.sync; public class Singletion { private static class InnerSingletion { private static Singletion single = new Singletion(); } public static Singletion getInstance() { return InnerSinglet

  • Java适配器模式定义与用法示例

    本文实例讲述了Java适配器模式定义与用法.分享给大家供大家参考,具体如下: 将一个类的接口转换成客户想要的另一个接口,适配器模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作 适配器一共包括3种角色 1.目标:目标是一个接口,该接口是客户想使用的接口 2.被适配者:被适配者是一个已存在的接口或抽象类,这个接口或抽象类需要适配 3.适配器:适配器是一个类,该类实现了目标接口并包含有被适配者的引用,即适配者的指着是对被适配者接口与目标进行适配 package org.zhy.adapte

  • 详解java 单例模式及方法总结

    java设计模式--单例模式  单例设计模式 Singleton是一种创建型模式,指某个类采用Singleton模式,则在这个类被创建后,只可能产生一个实例供外部访问,并且提供一个全局的访问点. 核心知识点如下: (1) 将采用单例设计模式的类的构造方法私有化(采用private修饰). (2) 在其内部产生该类的实例化对象,并将其封装成private static类型. (3) 定义一个静态方法返回该类的实例. /** * 方法一 * 单例模式的实现:饿汉式,线程安全 但效率比较低 */ pu

  • JAVA多线程并发下的单例模式应用

    单例模式应该是设计模式中比较简单的一个,也是非常常见的,但是在多线程并发的环境下使用却是不那么简单了,今天给大家分享一个我在开发过程中遇到的单例模式的应用. 首先我们先来看一下单例模式的定义: 一个类有且仅有一个实例,并且自行实例化向整个系统提供. 单例模式的要素: 1.私有的静态的实例对象 2.私有的构造函数(保证在该类外部,无法通过new的方式来创建对象实例) 3.公有的.静态的.访问该实例对象的方法 单例模式分为懒汉形和饿汉式 懒汉式: 应用刚启动的时候,并不创建实例,当外部调用该类的实例

  • Java多线程下的单例模式参考

    单例有多种的写法,本例是懒汉式单例的一种写法.在高并发环境下需要注意的是: 1.单例在并发访问并调用其相应的getInstance方法的时候也会造成创建多个实例对象,加锁是必要的. 2.使用synchronized是比较好的解决方案,优点是代码简洁,缺点是在抛出异常的时候不能处理维护使系统处于良好状态. 3.显示的lock设定是良好的解决方案. 使用lock的代码如下: package demo; import java.util.concurrent.locks.Lock; import ja

随机推荐