Python实现二叉树前序、中序、后序及层次遍历示例代码

前言

树是数据结构中非常重要的一种,主要的用途是用来提高查找效率,对于要重复查找的情况效果更佳,如二叉排序树、FP-树。另外可以用来提高编码效率,如哈弗曼树。

用 Python 实现树的构造和几种遍历算法。实现功能如下:

  • 树的构造
  • 递归实现先序遍历、中序遍历、后序遍历
  • 堆栈实现先序遍历、中序遍历、后序遍历
  • 队列实现层次遍历
# -*- coding=utf-8 -*-

class Node(object):
 """节点类"""

 def __init__(self, element=-1, l_child=None, r_child=None):
  self.element = element
  self.l_child = l_child
  self.r_child = r_child

class Tree(object):
 """树类"""

 def __init__(self):
  self.root = Node()
  self.queue = []

 def add_node(self, element):
  """为树添加节点"""

  node = Node(element)
  # 如果树是空的,则对根节点赋值
  if self.root.element == -1:
   self.root = node
   self.queue.append(self.root)
  else:
   tree_node = self.queue[0]
   # 此结点没有左子树,则创建左子树节点
   if tree_node.l_child is None:
    tree_node.l_child = node
    self.queue.append(tree_node.l_child)
   else:
    tree_node.r_child = node
    self.queue.append(tree_node.r_child)
    # 如果该结点存在右子树,将此节点丢弃
    self.queue.pop(0)

 def front_recursion(self, root):
  """利用递归实现树的前序遍历"""

  if root is None:
   return

  print root.element,
  self.front_recursion(root.l_child)
  self.front_recursion(root.r_child)

 def middle_recursion(self, root):
  """利用递归实现树的中序遍历"""

  if root is None:
   return

  self.middle_recursion(root.l_child)
  print root.element,
  self.middle_recursion(root.r_child)

 def back_recursion(self, root):
  """利用递归实现树的后序遍历"""

  if root is None:
   return

  self.back_recursion(root.l_child)
  self.back_recursion(root.r_child)
  print root.element,

 @staticmethod
 def front_stack(root):
  """利用堆栈实现树的前序遍历"""

  if root is None:
   return

  stack = []
  node = root
  while node or stack:
   # 从根节点开始,一直找它的左子树
   while node:
    print node.element,
    stack.append(node)
    node = node.l_child
   # while结束表示当前节点node为空,即前一个节点没有左子树了
   node = stack.pop()
   # 开始查看它的右子树
   node = node.r_child

 @staticmethod
 def middle_stack(root):
  """利用堆栈实现树的中序遍历"""

  if root is None:
   return

  stack = []
  node = root
  while node or stack:
   # 从根节点开始,一直找它的左子树
   while node:
    stack.append(node)
    node = node.l_child
   # while结束表示当前节点node为空,即前一个节点没有左子树了
   node = stack.pop()
   print node.element,
   # 开始查看它的右子树
   node = node.r_child

 @staticmethod
 def back_stack(root):
  """利用堆栈实现树的后序遍历"""

  if root is None:
   return

  stack1 = []
  stack2 = []
  node = root
  stack1.append(node)
  # 这个while循环的功能是找出后序遍历的逆序,存在stack2里面
  while stack1:
   node = stack1.pop()
   if node.l_child:
    stack1.append(node.l_child)
   if node.r_child:
    stack1.append(node.r_child)
   stack2.append(node)
  # 将stack2中的元素出栈,即为后序遍历次序
  while stack2:
   print stack2.pop().element,

 @staticmethod
 def level_queue(root):
  """利用队列实现树的层次遍历"""

  if root is None:
   return

  queue = []
  node = root
  queue.append(node)
  while queue:
   node = queue.pop(0)
   print node.element,
   if node.l_child is not None:
    queue.append(node.l_child)
   if node.r_child is not None:
    queue.append(node.r_child)

if __name__ == '__main__':
 """主函数"""

 # 生成十个数据作为树节点
 elements = range(10)
 tree = Tree()
 for elem in elements:
  tree.add_node(elem)

 print '队列实现层次遍历:'
 tree.level_queue(tree.root)

 print '\n\n递归实现前序遍历:'
 tree.front_recursion(tree.root)
 print '\n递归实现中序遍历:'
 tree.middle_recursion(tree.root)
 print '\n递归实现后序遍历:'
 tree.back_recursion(tree.root)

 print '\n\n堆栈实现前序遍历:'
 tree.front_stack(tree.root)
 print '\n堆栈实现中序遍历:'
 tree.middle_stack(tree.root)
 print '\n堆栈实现后序遍历:'
 tree.back_stack(tree.root)

需要源码的小伙伴可自行下载:代码传送门

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对我们的支持。

(0)

相关推荐

  • Python中的二叉树查找算法模块使用指南

    python中的二叉树模块内容: BinaryTree:非平衡二叉树  AVLTree:平衡的AVL树  RBTree:平衡的红黑树 以上是用python写的,相面的模块是用c写的,并且可以做为Cython的包. FastBinaryTree  FastAVLTree  FastRBTree 特别需要说明的是:树往往要比python内置的dict类慢一些,但是它中的所有数据都是按照某个关键词进行排序的,故在某些情况下是必须使用的. 安装和使用 安装方法 安装环境: ubuntu12.04, py

  • python实现的二叉树定义与遍历算法实例

    本文实例讲述了python实现的二叉树定义与遍历算法.分享给大家供大家参考,具体如下: 初学python,需要实现一个决策树,首先实践一下利用python实现一个二叉树数据结构.建树的时候做了处理,保证建立的二叉树是平衡二叉树. # -*- coding: utf-8 -*- from collections import deque class Node: def __init__(self,val,left=None,right=None): self.val=val self.left=l

  • python二叉树的实现实例

    树的定义树是一种重要的非线性数据结构,直观地看,它是数据元素(在树中称为结点)按分支关系组织起来的结构,很象自然界中的树那样.树结构在客观世界中广泛存在,如人类社会的族谱和各种社会组织机构都可用树形象表示.树在计算机领域中也得到广泛应用,如在编译源程序时,可用树表示源程序的语法结构.又如在数据库系统中,树型结构也是信息的重要组织形式之一.一切具有层次关系的问题都可用树来描述.树结构的特点是:它的每一个结点都可以有不止一个直接后继,除根结点外的所有结点都有且只有一个直接前驱.树的递归定义如下:(1

  • Python利用前序和中序遍历结果重建二叉树的方法

    本文实例讲述了Python利用前序和中序遍历结果重建二叉树的方法.分享给大家供大家参考,具体如下: 题目:输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字. 这道题比较容易,前序遍历的结果中,第一个结点一定是根结点,然后在中序遍历的结果中查找这个根结点,根结点左边的就是左子树,根结点右边的就是右子树,递归构造出左.右子树即可.示意图如图所示: 利用前序和中序遍历的结果重建二叉树 Python代码: # coding: utf-8 ''

  • python二叉树遍历的实现方法

    复制代码 代码如下: #!/usr/bin/python# -*- coding: utf-8 -*- class TreeNode(object):    def __init__(self,data=0,left=0,right=0):        self.data = data        self.left = left        self.right = right class BTree(object):    def __init__(self,root=0):     

  • Python实现输入二叉树的先序和中序遍历,再输出后序遍历操作示例

    本文实例讲述了Python实现输入二叉树的先序和中序遍历,再输出后序遍历操作.分享给大家供大家参考,具体如下: 实现一个功能: 输入:一颗二叉树的先序和中序遍历     输出:后续遍历 思想: 先序遍历中,第一个元素是树根     在中序遍历中找到树根,左边的是左子树 右边的是右子树 Python代码: # -*- coding:utf-8 -*- def fromFMtoL( mid ): global las #全局后序遍历 global fir #先序遍历 root = fir[0] #取

  • Python二叉树的遍历操作示例【前序遍历,中序遍历,后序遍历,层序遍历】

    本文实例讲述了Python二叉树的遍历操作.分享给大家供大家参考,具体如下: # coding:utf-8 """ @ encoding: utf-8 @ author: lixiang @ email: lixiang_cn@foxmail.com @ python_version: 2 @ time: 2018/4/11 0:09 @ more_info: 二叉树是有限个元素的集合,该集合或者为空.或者有一个称为根节点(root)的元素及两个互不相交的.分别被称为左子树和

  • python数据结构树和二叉树简介

    一.树的定义 树形结构是一类重要的非线性结构.树形结构是结点之间有分支,并具有层次关系的结构.它非常类似于自然界中的树.树的递归定义:树(Tree)是n(n≥0)个结点的有限集T,T为空时称为空树,否则它满足如下两个条件:(1)有且仅有一个特定的称为根(Root)的结点:(2)其余的结点可分为m(m≥0)个互不相交的子集Tl,T2,-,Tm,其中每个子集本身又是一棵树,并称其为根的子树(Subree). 二.二叉树的定义 二叉树是由n(n≥0)个结点组成的有限集合.每个结点最多有两个子树的有序树

  • Python实现二叉树结构与进行二叉树遍历的方法详解

    二叉树的建立 使用类的形式定义二叉树,可读性更好 class BinaryTree: def __init__(self, root): self.key = root self.left_child = None self.right_child = None def insert_left(self, new_node): if self.left_child == None: self.left_child = BinaryTree(new_node) else: t = BinaryTr

  • python数据结构之二叉树的遍历实例

    遍历方案   从二叉树的递归定义可知,一棵非空的二叉树由根结点及左.右子树这三个基本部分组成.因此,在任一给定结点上,可以按某种次序执行三个操作:   1).访问结点本身(N)   2).遍历该结点的左子树(L)   3).遍历该结点的右子树(R) 有次序:   NLR.LNR.LRN 遍历的命名 根据访问结点操作发生位置命名:NLR:前序遍历(PreorderTraversal亦称(先序遍历))  --访问结点的操作发生在遍历其左右子树之前.LNR:中序遍历(InorderTraversal)

随机推荐