python时间序列按频率生成日期的方法

有时候我们的数据是按某个频率收集的,比如每日、每月、每15分钟,那么我们怎么产生对应频率的索引呢?pandas中的date_range可用于生成指定长度的DatetimeIndex。

我们先看一下怎么生成日期范围:pd.date_range(startdate,enddate)

1.生成指定开始日期和结束日期的时间范围:

In:import pandas as pd
	index = pd.date_range('4/1/2019','5/1/2019')
	print(index)
Out:
DatetimeIndex(['2019-04-01', '2019-04-02', '2019-04-03', '2019-04-04',
        '2019-04-05', '2019-04-06', '2019-04-07', '2019-04-08',
        '2019-04-09', '2019-04-10', '2019-04-11', '2019-04-12',
        '2019-04-13', '2019-04-14', '2019-04-15', '2019-04-16',
        '2019-04-17', '2019-04-18', '2019-04-19', '2019-04-20',
        '2019-04-21', '2019-04-22', '2019-04-23', '2019-04-24',
        '2019-04-25', '2019-04-26', '2019-04-27', '2019-04-28',
        '2019-04-29', '2019-04-30', '2019-05-01'],
       dtype='datetime64[ns]', freq='D')

也可以只指定开始日期或结束日期,但这时必须要输入一个时间长度,并且指定输入的是开始时间还是结束时间,如果不指定默认是开始时间。

date_range(startdate/enddate,periods)

In:print(pd.date_range(start = '4/1/2019',periods = 10))
Out:DatetimeIndex(['2019-04-01', '2019-04-02', '2019-04-03', '2019-04-04',
        '2019-04-05', '2019-04-06', '2019-04-07', '2019-04-08',
        '2019-04-09', '2019-04-10'],
       dtype='datetime64[ns]', freq='D')
In:print(pd.date_range(start = '5/1/2019',periods = 10))
Out:DatetimeIndex(['2019-05-01', '2019-05-02', '2019-05-03', '2019-05-04',
          '2019-05-05', '2019-05-06', '2019-05-07', '2019-05-08',
          '2019-05-09', '2019-05-10'],
         dtype='datetime64[ns]', freq='D')

现在我们已经知道怎么生成日期范围了,但是上面我们生成的日期的时间间隔都是天,接下来告诉大家怎么生成其他时间频率的日期范围。

要生成按某个频率计算的日期范围,只需要在date_range后加上freq就可以了。比如,生成每小时间隔的时间:

In:print(pd.date_range(start = '5/1/2019',periods = 10,freq = 'h'))
Out:DatetimeIndex(['2019-05-01 00:00:00', '2019-05-01 01:00:00',
        '2019-05-01 02:00:00', '2019-05-01 03:00:00',
        '2019-05-01 04:00:00', '2019-05-01 05:00:00',
        '2019-05-01 06:00:00', '2019-05-01 07:00:00',
        '2019-05-01 08:00:00', '2019-05-01 09:00:00'],
       dtype='datetime64[ns]', freq='H')

生成时间间隔为3个小时的时间:

In:print(pd.date_range(start = '5/1/2019',periods = 10,freq = '3h'))
Out:DatetimeIndex(['2019-05-01 00:00:00', '2019-05-01 01:00:00',
        '2019-05-01 02:00:00', '2019-05-01 03:00:00',
        '2019-05-01 04:00:00', '2019-05-01 05:00:00',
        '2019-05-01 06:00:00', '2019-05-01 07:00:00',
        '2019-05-01 08:00:00', '2019-05-01 09:00:00'],
       dtype='datetime64[ns]', freq='H')

生成时间间隔为1小时30分的时间:

In:print(pd.date_range(start = '5/1/2019',periods = 10,freq = '1h30min'))
Out:DatetimeIndex(['2019-05-01 00:00:00', '2019-05-01 01:30:00',
        '2019-05-01 03:00:00', '2019-05-01 04:30:00',
        '2019-05-01 06:00:00', '2019-05-01 07:30:00',
        '2019-05-01 09:00:00', '2019-05-01 10:30:00',
        '2019-05-01 12:00:00', '2019-05-01 13:30:00'],
       dtype='datetime64[ns]', freq='90T')

python还可以生成其他不规则频率的时间,比如每月的第一个工作日,每月的第一个日历日等

生成每月的第一个工作日:

In:print(pd.date_range(start = '1/1/2019',periods = 12,freq = 'BMS'))
Out:DatetimeIndex(['2019-01-01', '2019-02-01', '2019-03-01', '2019-04-01',
        '2019-05-01', '2019-06-03', '2019-07-01', '2019-08-01',
        '2019-09-02', '2019-10-01', '2019-11-01', '2019-12-02'],
       dtype='datetime64[ns]', freq='BMS')

生成每月的第一个日历日:

In:print(pd.date_range(start = '1/1/2019',periods = 12,freq = 'MS'))
Out:DatetimeIndex(['2019-01-01', '2019-02-01', '2019-03-01', '2019-04-01',
        '2019-05-01', '2019-06-01', '2019-07-01', '2019-08-01',
        '2019-09-01', '2019-10-01', '2019-11-01', '2019-12-01'],
       dtype='datetime64[ns]', freq='MS')

有一种很实用的频率类,为“WOM”,即每月的几个星期几。比如每月的第三个星期五。如果我们每月的第三个星期五发工资,这样就可以很方便的知道今年每个月的工资日了。

In:print(pd.date_range(start = '1/1/2019',periods = 12,freq = 'WOM-3FRI'))
Out:DatetimeIndex(['2019-01-18', '2019-02-15', '2019-03-15', '2019-04-19',
        '2019-05-17', '2019-06-21', '2019-07-19', '2019-08-16',
        '2019-09-20', '2019-10-18', '2019-11-15', '2019-12-20'],
       dtype='datetime64[ns]', freq='WOM-3FRI')

下面是python可使用的时间序列的基础频率表:

别名 偏移量类型 说明
D Day 每日历日
B BusinessDay 每工作日
H Hour 每小时
T或min Minute 每分钟
S Second 每秒
L或ms Milli 每毫秒
U Micro 每微秒
M MonthEnd 每月最后一个日历日
BM BusinessMonthEnd 每月最后一个工作日
MS MonthBegin 每月第一个日历日
BMS BusinessMonthBegin 每月第一个工作日
W-MON、W-TUE Week 每周的星期几
WOM-1MON、WOM-2MON WeekofMonth 每月第几周的星期几
Q-JAN、Q-FEB QuarterEnd 每个季度对应的该月份的最后一个日历日
BQ-JAN、BQ-FEB BusinessQuarterEnd 每个季度对应的该月份的最后一个工作日
QS-JAN、QS-FEB QuarterBegin 每个季度对应的该月份的第一个日历日
BQS-JAN、BQS-FEB QuarterBegin 每个季度对应的该月份的第一个工作日
A-JAN、B-FEB YearEnd 每年指定月份的最后一个日历日
BA-JAN、BA-FEB BusinessYearEnd 每年指定月份的最后一个工作日
AS-JAN、AS-FEB YearBegin 每年指定月份的第一个日历日
BAS-JAN、BAS-FEB BusinessYearBegin 每年指定月份的第一个工作日

以上所述是小编给大家介绍的python时间序列按频率生成日期的方法详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!

(0)

相关推荐

  • Python时间序列处理之ARIMA模型的使用讲解

    ARIMA模型 ARIMA模型的全称是自回归移动平均模型,是用来预测时间序列的一种常用的统计模型,一般记作ARIMA(p,d,q). ARIMA的适应情况 ARIMA模型相对来说比较简单易用.在应用ARIMA模型时,要保证以下几点: 时间序列数据是相对稳定的,总体基本不存在一定的上升或者下降趋势,如果不稳定可以通过差分的方式来使其变稳定. 非线性关系处理不好,只能处理线性关系 判断时序数据稳定 基本判断方法:稳定的数据,总体上是没有上升和下降的趋势的,是没有周期性的,方差趋向于一个稳定的值. A

  • python时间日期函数与利用pandas进行时间序列处理详解

    python标准库包含于日期(date)和时间(time)数据的数据类型,datetime.time以及calendar模块会被经常用到. datetime以毫秒形式存储日期和时间,datetime.timedelta表示两个datetime对象之间的时间差. 下面我们先简单的了解下python日期和时间数据类型及工具 给datetime对象加上或减去一个或多个timedelta,会产生一个新的对象 from datetime import datetime from datetime impo

  • python+pandas+时间、日期以及时间序列处理方法

    先简单的了解下日期和时间数据类型及工具 python标准库包含于日期(date)和时间(time)数据的数据类型,datetime.time以及calendar模块会被经常用到. datetime以毫秒形式存储日期和时间,datetime.timedelta表示两个datetime对象之间的时间差. 给datetime对象加上或减去一个或多个timedelta,会产生一个新的对象 from datetime import datetime from datetime import timedel

  • python pandas 对时间序列文件处理的实例

    如下所示: import pandas as pd from numpy import * import matplotlib.pylab as plt import copy def read(filename): dat=pd.read_csv(filename,iterator=True) loop = True chunkSize = 1000000 R=[] while loop: try: data = dat.get_chunk(chunkSize) data=data.loc[:

  • python时间序列按频率生成日期的方法

    有时候我们的数据是按某个频率收集的,比如每日.每月.每15分钟,那么我们怎么产生对应频率的索引呢?pandas中的date_range可用于生成指定长度的DatetimeIndex. 我们先看一下怎么生成日期范围:pd.date_range(startdate,enddate) 1.生成指定开始日期和结束日期的时间范围: In:import pandas as pd index = pd.date_range('4/1/2019','5/1/2019') print(index) Out: Da

  • Python操作Word批量生成文章的方法

    下面通过COM让Python与Word建立连接实现Python操作Word批量生成文章,具体介绍请看下文: 需要做一些会议记录.总共有多少呢?五个地点x7个月份x每月4篇=140篇.虽然不很重要,但是140篇记录完全雷同也不好.大体看了一下,此类的记录大致分为四段.于是决定每段提供四种选项,每段从四选项里随机选一项,拼凑成四段文字,存成一个文件.而且要打印出来,所以准备生成一个140页的Word文档,每页一篇. 需要用到win32com模块(下载链接: http://sourceforge.ne

  • Python根据区号生成手机号码的方法

    本文实例讲述了Python根据区号生成手机号码的方法.分享给大家供大家参考.具体实现方法如下: # _*_ coding:utf-8 _*_ #xiaohei.python.seo.call.me:) #win+python2.7.x number = "1350571" #这里演示杭州区号 with open("hm.txt","w") as f: for i in range(0001,9999): ok = number + "{

  • python计算N天之后日期的方法

    本文实例讲述了python计算N天之后日期的方法.分享给大家供大家参考.具体如下: python计算N天之后的日期,可以自己写成一个函数,想得到几天后的日期都行 #! /usr/bin/env python #coding=utf-8 import time import datetime d1 = datetime.datetime.now() d3 = d1 + datetime.timedelta(days =10) print str(d3) print d3.ctime() 输出结果如

  • python读取文件名称生成list的方法

    经常需要读取某个文件夹下所有的图像文件. 我使用python写了个简单的代码,读取某个文件夹下某个后缀的文件,将文件名生成为文本(csv格式) import fnmatch import os import pandas as pd import numpy as np import sys InputStra = sys.argv[1] InputStrb = sys.argv[2] def ReadSaveAddr(Stra,Strb): #print(Stra) #print(Strb)

  • Python根据指定文件生成XML的方法

        因项目需要根据指定格式的文件生成XML标注文件,可以方便使用LabelImg打开进行编辑和查看.其原始文件默认使用逗号进行分隔,如下所示: 第1个值:原始图片中切图小文件,以AIpng_x,其中x代表原始图片的第几个切图文件 第2~5值:分别对应于ymin, xmin, ymax, xmax 第6个值:代表对应的标签标注     在生成XML文件时,需要对其进行汇总,即将属于同一个原始文件的切图小文件的标注汇总到一起,其实现代码如下所示: import os from Logger im

  • python时间序列数据转为timestamp格式的方法

    在此记录自己学习python数据分析过程中学到的一些数据处理的小技巧. 1.数据的读取 #导入numpy库和pandas库 import numpy as np import pandas as pd #读取待处理的数据 #file_path为文件路径名,sheet_name为需要读取的excel数据页 data=pd.read_excel(file_path,sheet_name) #显示数据前5行 data.head() 数据读取的结果: 由读取结果可以看出,时间序列数据并不规范,需要做进一

  • python使用Random随机生成列表的方法实例

    目录 引言: 1.在python中用random生成一个列表. 2.翻了一些资料找到了取值不重复的写法 3.下面用冒泡排序来实验一下效果 附:一行代码实现生成一个随机列表 总结 引言: 闲来想到冒泡排序中的列表数据的排序,就想试试用随机数生成一个列表来排序试试,于是做了一下实验,本人实在是属于入门阶段,研究了一下终究还是完成了 1.在python中用random生成一个列表. (0,1000)指列表中的数取值范围0~1000之间,list列表数的lenth=10. import random l

  • Python时间序列数据的预处理方法总结

    目录 前言 时间序列中的缺失值 时间序列去噪 滚动平均值 傅里叶变换 时间序列中的离群值检测 基于滚动统计的方法 孤立森林 K-means 聚类 面试问题 总结 前言 时间序列数据随处可见,要进行时间序列分析,我们必须先对数据进行预处理.时间序列预处理技术对数据建模的准确性有重大影响. 在本文中,我们将主要讨论以下几点: 时间序列数据的定义及其重要性. 时间序列数据的预处理步骤. 构建时间序列数据,查找缺失值,对特征进行去噪,并查找数据集中存在的异常值. 首先,让我们先了解时间序列的定义: 时间

  • Python中生成Epoch的方法

    在Python2中datetime对象没有timestamp方法,不能很方便的生成epoch,现有方法没有处理很容易导致错误.关于Epoch可以参见时区与Epoch 0 Python中生成Epoch from datetime import datetime # python3 datetime.now().timestamp() # python2 import time time.mktime(datetime.now().timetuple()) # 为了兼容python2和3,该用法使用

随机推荐