通过Java测试几种压缩算法的性能(附测试代码下载)

本文将会对常用的几个压缩算法的性能作一下比较。结果表明,某些算法在极端苛刻的CPU限制下仍能正常工作。

文中进行比较的算有:

JDK GZIP ——这是一个压缩比高的慢速算法,压缩后的数据适合长期使用。JDK中的java.util.zip.GZIPInputStream / GZIPOutputStream便是这个算法的实现。
JDK deflate ——这是JDK中的又一个算法(zip文件用的就是这一算法)。它与gzip的不同之处在于,你可以指定算法的压缩级别,这样你可以在压缩时间和输出文件大小上进行平衡。可选的级别有0(不压缩),以及1(快速压缩)到9(慢速压缩)。它的实现是java.util.zip.DeflaterOutputStream / InflaterInputStream。
LZ4压缩算法的Java实现——这是本文介绍的算法中压缩速度最快的一个,与最快速的deflate相比,它的压缩的结果要略微差一点。
Snappy——这是Google开发的一个非常流行的压缩算法,它旨在提供速度与压缩比都相对较优的压缩算法。
压缩测试

要找出哪些既适合进行数据压缩测试又存在于大多数Java开发人员的电脑中(我可不希望你为了运行这个测试还得个几百兆的文件)的文件也着实费了我不少工夫。最后我想到,大多数人应该都会在本地安装有JDK的文档。因此我决定将javadoc的目录整个合并成一个文件——拼接所有文件。这个通过tar命令可以很容易完成,但并非所有人都是Linux用户,因此我写了个程序来生成这个文件:

public class InputGenerator {
  private static final String JAVADOC_PATH = "your_path_to_JDK/docs";
  public static final File FILE_PATH = new File( "your_output_file_path" );

  static
  {
    try {
      if ( !FILE_PATH.exists() )
        makeJavadocFile();
    } catch (IOException e) {
      e.printStackTrace();
    }
  }

  private static void makeJavadocFile() throws IOException {
    try( OutputStream os = new BufferedOutputStream( new FileOutputStream( FILE_PATH ), 65536 ) )
    {
      appendDir(os, new File( JAVADOC_PATH ));
    }
    System.out.println( "Javadoc file created" );
  }

  private static void appendDir( final OutputStream os, final File root ) throws IOException {
    for ( File f : root.listFiles() )
    {
      if ( f.isDirectory() )
        appendDir( os, f );
      else
        Files.copy(f.toPath(), os);
    }
  }
}

在我的机器上整个文件的大小是354,509,602字节(338MB)。

测试

一开始我想把整个文件读进内存里,然后再进行压缩。不过结果表明这么做的话即便是4G的机器上也很容易把堆内存空间耗尽。

于是我决定使用操作系统的文件缓存。这里我们用的测试框架是JMH。这个文件在预热阶段会被操作系统加载到缓存中(在预热阶段会先压缩两次)。我会将内容压缩到ByteArrayOutputStream流中(我知道这并不是最快的方法,但是对于各个测试而言它的性能是比较稳定的,并且不需要花费时间将压缩后的数据写入到磁盘里),因此还需要一些内存空间来存储这个输出结果。

下面是测试类的基类。所有的测试不同的地方都只在于压缩的输出流的实现不同,因此可以复用这个测试基类,只需从StreamFactory实现中生成一个流就好了:

@OutputTimeUnit(TimeUnit.MILLISECONDS)
@State(Scope.Thread)
@Fork(1)
@Warmup(iterations = 2)
@Measurement(iterations = 3)
@BenchmarkMode(Mode.SingleShotTime)
public class TestParent {
  protected Path m_inputFile;

  @Setup
  public void setup()
  {
    m_inputFile = InputGenerator.FILE_PATH.toPath();
  }

  interface StreamFactory
  {
    public OutputStream getStream( final OutputStream underlyingStream ) throws IOException;
  }

  public int baseBenchmark( final StreamFactory factory ) throws IOException
  {
    try ( ByteArrayOutputStream bos = new ByteArrayOutputStream((int) m_inputFile.toFile().length());
       OutputStream os = factory.getStream( bos ) )
    {
      Files.copy(m_inputFile, os);
      os.flush();
      return bos.size();
    }
  }
}

这些测试用例都非常相似(在文末有它们的源代码),这里只列出了其中的一个例子——JDK deflate的测试类;

public class JdkDeflateTest extends TestParent {
  @Param({"1", "2", "3", "4", "5", "6", "7", "8", "9"})
  public int m_lvl;

  @Benchmark
  public int deflate() throws IOException
  {
    return baseBenchmark(new StreamFactory() {
      @Override
      public OutputStream getStream(OutputStream underlyingStream) throws IOException {
        final Deflater deflater = new Deflater( m_lvl, true );
        return new DeflaterOutputStream( underlyingStream, deflater, 512 );
      }
    });
  }
}

测试结果

输出文件的大小
首先我们来看下输出文件的大小:

||实现||文件大小(字节)|| ||GZIP||64,200,201|| ||Snappy (normal)||138,250,196|| ||Snappy (framed)|| 101,470,113|| ||LZ4 (fast)|| 98,316,501|| ||LZ4 (high) ||82,076,909|| ||Deflate (lvl=1) ||78,369,711|| ||Deflate (lvl=2) ||75,261,711|| ||Deflate (lvl=3) ||73,240,781|| ||Deflate (lvl=4) ||68,090,059|| ||Deflate (lvl=5) ||65,699,810|| ||Deflate (lvl=6) ||64,200,191|| ||Deflate (lvl=7) ||64,013,638|| ||Deflate (lvl=8) ||63,845,758|| ||Deflate (lvl=9) ||63,839,200||

可以看出文件的大小相差悬殊(从60Mb到131Mb)。我们再来看下不同的压缩方法需要的时间是多少。

压缩时间

||实现||压缩时间(ms)|| ||Snappy.framedOutput ||2264.700|| ||Snappy.normalOutput ||2201.120|| ||Lz4.testFastNative ||1056.326|| ||Lz4.testFastUnsafe ||1346.835|| ||Lz4.testFastSafe ||1917.929|| ||Lz4.testHighNative ||7489.958|| ||Lz4.testHighUnsafe ||10306.973|| ||Lz4.testHighSafe ||14413.622|| ||deflate (lvl=1) ||4522.644|| ||deflate (lvl=2) ||4726.477|| ||deflate (lvl=3) ||5081.934|| ||deflate (lvl=4) ||6739.450|| ||deflate (lvl=5) ||7896.572|| ||deflate (lvl=6) ||9783.701|| ||deflate (lvl=7) ||10731.761|| ||deflate (lvl=8) ||14760.361|| ||deflate (lvl=9) ||14878.364|| ||GZIP ||10351.887||

我们再将压缩时间和文件大小合并到一个表中来统计下算法的吞吐量,看看能得出什么结论。

吞吐量及效率

||实现||时间(ms)||未压缩文件大小||吞吐量(Mb/秒)||压缩后文件大小(Mb)|| ||Snappy.normalOutput ||2201.12 ||338 ||153.5581885586 ||131.8454742432|| ||Snappy.framedOutput ||2264.7 ||338 ||149.2471409017 ||96.7693328857|| ||Lz4.testFastNative ||1056.326 ||338 ||319.9769768045 ||93.7557220459|| ||Lz4.testFastSafe ||1917.929 ||338 ||176.2317583185 ||93.7557220459|| ||Lz4.testFastUnsafe ||1346.835 ||338 ||250.9587291688 ||93.7557220459|| ||Lz4.testHighNative ||7489.958 ||338 ||45.1270888301 ||78.2680511475|| ||Lz4.testHighSafe ||14413.622 ||338 ||23.4500391366 ||78.2680511475|| ||Lz4.testHighUnsafe ||10306.973 ||338 ||32.7933332124 ||78.2680511475|| ||deflate (lvl=1) ||4522.644 ||338 ||74.7350443679 ||74.7394561768|| ||deflate (lvl=2) ||4726.477 ||338 ||71.5120374012 ||71.7735290527|| ||deflate (lvl=3) ||5081.934 ||338 ||66.5101120951 ||69.8471069336|| ||deflate (lvl=4) ||6739.45 ||338 ||50.1524605124 ||64.9452209473|| ||deflate (lvl=5) ||7896.572 ||338 ||42.8033835442 ||62.6564025879|| ||deflate (lvl=6) ||9783.701 ||338 ||34.5472536415 ||61.2258911133|| ||deflate (lvl=7) ||10731.761 ||338 ||31.4952969974 ||61.0446929932|| ||deflate (lvl=8) ||14760.361 ||338 ||22.8991689295 ||60.8825683594|| ||deflate (lvl=9) ||14878.364 ||338 ||22.7175514727 ||60.8730316162|| ||GZIP ||10351.887 ||338 ||32.651051929 ||61.2258911133||

可以看到,其中大多数实现的效率是非常低的:在Xeon E5-2650处理器上,高级别的deflate大约是23Mb/秒,即使是GZIP也就只有33Mb/秒,这大概很难令人满意。同时,最快的defalte算法大概能到75Mb/秒,Snappy是150Mb/秒,而LZ4(快速,JNI实现)能达到难以置信的320Mb/秒!

从表中可以清晰地看出目前有两种实现比较处于劣势:Snappy要慢于LZ4(快速压缩),并且压缩后的文件要更大。相反,LZ4(高压缩比)要慢于级别1到4的deflate,而输出文件的大小即便和级别1的deflate相比也要大上不少。

因此如果需要进行“实时压缩”的话我肯定会在LZ4(快速)的JNI实现或者是级别1的deflate中进行选择。当然如果你的公司不允许使用第三方库的话你也只能使用deflate了。你还要综合考虑有多少空闲的CPU资源以及压缩后的数据要存储到哪里。比方说,如果你要将压缩后的数据存储到HDD的话,那么上述100Mb/秒的性能对你而言是毫无帮助的(假设你的文件足够大的话)——HDD的速度会成为瓶颈。同样的文件如果输出到SSD硬盘的话——即便是LZ4在它面前也显得太慢了。如果你是要先压缩数据再发送到网络上的话,最好选择LZ4,因为deflate75Mb/秒的压缩性能跟网络125Mb/秒的吞吐量相比真是小巫见大巫了(当然,我知道网络流量还有包头,不过即使算上了它这个差距也是相当可观的)。

总结

如果你认为数据压缩非常慢的话,可以考虑下LZ4(快速)实现,它进行文本压缩能达到大约320Mb/秒的速度——这样的压缩速度对大多数应用而言应该都感知不到。
如果你受限于无法使用第三方库或者只希望有一个稍微好一点的压缩方案的话,可以考虑下使用JDK deflate(lvl=1)进行编解码——同样的文件它的压缩速度能达到75Mb/秒。
源代码

Java压缩测试源码

(0)

相关推荐

  • java使用gzip实现文件解压缩示例

    复制代码 代码如下: package com.cjonline.foundation.cpe.action; import java.io.ByteArrayInputStream;import java.io.ByteArrayOutputStream;import java.io.File;import java.io.FileInputStream;import java.io.FileOutputStream;import java.io.InputStream;import java.

  • java实现图片压缩的思路与代码

    本文实例为大家分享了java实现图片压缩的相关代码,供大家参考,具体内容如下 import java.awt.Image; import java.awt.image.BufferedImage; import java.io.ByteArrayOutputStream; import java.io.IOException; import java.io.InputStream; import javax.imageio.ImageIO; public class ImageProcess {

  • Java操作Ant压缩和解压文件及批量打包Anroid应用

    实现zip/tar的压缩与解压 java中实际是提供了对  zip等压缩格式的支持,但是为什么这里会用到ant呢? 原因主要有两个: 1. java提供的类对于包括有中文字符的路径,文件名支持不够好,你用其它第三方软件解压的时候就会存在乱码.而ant.jar就支持文件名或者路径包括中文字符. 2. ant.jar提供了强大的工具类,更加方便于我们对压缩与解压的操作. 注意事项: 1. 首先说明一下,关于皮肤或者类似于皮肤的Zip包,实际上公司可能会根据自己的规定或需求,自定义压缩包文件的结尾,实

  • 实例展示使用Java压缩和解压缩7z文件的方法

    压缩为7z文件 首先网络上对7z的压缩内容很少. 尤其是java调用进行压缩的是更少了. 一下是自己完成的一个压缩. 本人进行了测试是成功的. 将压缩的流写如磁盘一个压缩文件中. 然后使用7z的压缩软件进行打开解压. 7-zip的开源项目7-zip-JBinding项目地址(sourceforge) 不多说,调用7z源码进行压缩的方法如下. public byte[] lzmaZip(String xml) throws IOException{ BufferedInputStream inSt

  • java 压缩和解压缩Zip、Jar、Gzip文件实例代码

    我们经常会使用WinZIP等压缩软件将文件进行压缩以方便传输.在java里面也提供了将文件进行压缩以减少传输时的数据量的类,可以很方便的将文件压缩成ZIP.JAR.GZIP等形式,GZIP主要是在Linux系统下的压缩文件. 下面主要讲的就是ZIP形式的压缩文件,而JAR.GZIP形式的压缩文件也是类似的用法. ZIP是一种很常见的压缩形式,在java中要实现ZIP的压缩主要用到的是java.util.zip这个包里面的类.主要有ZipFile. ZipOutputStream.ZipInput

  • Java 文件解压缩实现代码

    Java实现压缩文件的解压缩操作,缺点是压缩文件内不能含有文件名为中文的的文件,否则会出现如下错误: 复制代码 代码如下: Exception in thread "main" java.lang.IllegalArgumentException: MALFORMED at java.util.zip.ZipCoder.toString(Unknown Source) at java.util.zip.ZipInputStream.readLOC(Unknown Source) at

  • 详解Java中使用ImageIO类对图片进行压缩的方法

    最近做项目需要图片压缩处理,网上找的方法大都使用了 com.sun.image.codec.jpeg.* 这个包中的JPEGImageEncoder类,引入这个包后一直报错,各种google百度,尝试了各种方法,包括手动引jre中的rt.jar,以及在eclipse中把受访问限制的API提示从ERROR改为WARNING,等等,然而这些都是不好使的,因为后来我发现我的java-7-openjdk-amd64中的rt.jar里边根本就没有com.sun.image.*,貌似这个类在java7中已经

  • 利用Java实现zip压缩/解压缩

    由于网络带宽有限,所以数据文件的压缩有利于数据在Internet上的快速传输,同时也节 省服务器的外存空间. Java 1.1实现了I/O数据流与网络数据流的单一接口,因此数据的压缩.网络传输和解 压缩的实现比较容易,下面介绍利用ZipEntry.ZipInputStream和ZipOutputStream三个Java 类实现zip数据压缩方式的编程方法. zip压缩文件结构:一个zip文件由多个entry组成,每个entry有一个唯一的名称,entry的 数据项存储压缩数据. 与zip文件有关

  • 使用Java生成jpg与压缩图片为jpg文件的代码示例

    Java生成jpg格式图片: package other.pic; import com.sun.image.codec.jpeg.JPEGCodec; import com.sun.image.codec.jpeg.JPEGImageEncoder; import java.io.BufferedOutputStream; import java.io.FileOutputStream; import java.io.RandomAccessFile; import java.awt.imag

  • 通过Java测试几种压缩算法的性能(附测试代码下载)

    本文将会对常用的几个压缩算法的性能作一下比较.结果表明,某些算法在极端苛刻的CPU限制下仍能正常工作. 文中进行比较的算有: JDK GZIP --这是一个压缩比高的慢速算法,压缩后的数据适合长期使用.JDK中的java.util.zip.GZIPInputStream / GZIPOutputStream便是这个算法的实现. JDK deflate --这是JDK中的又一个算法(zip文件用的就是这一算法).它与gzip的不同之处在于,你可以指定算法的压缩级别,这样你可以在压缩时间和输出文件大

  • Java文件读写IO/NIO及性能比较详细代码及总结

    干Java这么久,一直在做WEB相关的项目,一些基础类差不多都已经忘记.经常想得捡起,但总是因为一些原因,不能如愿. 其实不是没有时间,只是有些时候疲于总结,今得空,下定决心将丢掉的都给捡起来. 文件读写是一个在项目中经常遇到的工作,有些时候是因为维护,有些时候是新功能开发.我们的任务总是很重,工作节奏很快,快到我们不能停下脚步去总结. 文件读写有以下几种常用的方法 1.字节读写(InputStream/OutputStream) 2.字符读取(FileReader/FileWriter) 3.

  • java编程两种树形菜单结构的转换代码

    首先看看两种树形菜单结构的代码示例. SingleTreeNode: package com.zzj.tree; public class SingleTreeNode { private int id; private int pId; private String name; public SingleTreeNode() { } public SingleTreeNode(int id, int pId, String name) { this.id = id; this.pId = pI

  • java编程无向图结构的存储及DFS操作代码详解

    图的概念 图是算法中是树的拓展,树是从上向下的数据结构,结点都有一个父结点(根结点除外),从上向下排列.而图没有了父子结点的概念,图中的结点都是平等关系,结果更加复杂. 无向图                                                       有向图 图G=(V,E),其中V代表顶点Vertex,E代表边edge,一条边就是一个定点对(u,v),其中(u,v)∈V. 这两天遇到一个关于图的算法,在网上找了很久没有找到java版的关于数据结构中图的存储及其

  • Java HashMap三种循环遍历方式及其性能对比实例分析

    本文实例讲述了Java HashMap三种循环遍历方式及其性能对比.分享给大家供大家参考,具体如下: HashMap的三种遍历方式 (1)for each map.entrySet() Map<String, String> map = new HashMap<String, String>(); for (Entry<String, String> entry : map.entrySet()) { entry.getKey(); entry.getValue();

  • Java字符串拼接的五种方法及性能比较分析(从执行100次到90万次)

    目录 > 源代码,供参考 > 测试结果: > 查看源代码,以及简单分析 > 字符串拼接一般使用"+",但是"+"不能满足大批量数据的处理,Java中有以下五种方法处理字符串拼接,各有优缺点,程序开发应选择合适的方法实现. 1. 加号 "+" 2. String contact() 方法 3. StringUtils.join() 方法 4. StringBuffer append() 方法 5. StringBuilder

  • java理论基础Stream性能论证测试示例

    目录 一.粉丝的反馈 二.所有性能测试结论都是片面的 三.动手测试Stream的性能 3.1.环境 3.2.测试用例与测试结论 3.2.1.测试用例一 3.2.2测试用例二 3.2.3测试用例三 四.最终测试结论 五.测试代码 测试用例一: 测试用例二: 测试用例三: 一.粉丝的反馈 问:stream比for循环慢5倍,用这个是为了啥? 答:互联网是一个新闻泛滥的时代,三人成虎,以假乱真的事情时候发生.作为一个技术开发者,要自己去动手去做,不要人云亦云. 的确,这位粉丝说的这篇文章我也看过,我就

  • [JAVA]十四种Java开发工具点评

    在计算机开发语言的历史中,从来没有哪种语言象Java那样受到如此众多厂商的支持,有如此多的开发工具,Java菜鸟们如初入大观园的刘姥姥,看花了眼,不知该何种选择.的确,这些工具各有所长,都没有绝对完美的,就算是老鸟也很难做出选择.在本文中我简要介绍了常见的十四种Java开发工具的特点,管中窥"器",希望能对大家有所帮助. 1.JDK (Java Development Kit) 2.Java Workshop 3.NetBeans 与Sun Java Studio 5 4.Borlan

  • java原生序列化和Kryo序列化性能实例对比分析

    简介 最近几年,各种新的高效序列化方式层出不穷,不断刷新序列化性能的上限,最典型的包括: 专门针对Java语言的:Kryo,FST等等 跨语言的:Protostuff,ProtoBuf,Thrift,Avro,MsgPack等等 这些序列化方式的性能多数都显著优于hessian2(甚至包括尚未成熟的dubbo序列化).有鉴于此,我们为dubbo引入Kryo和FST这 两种高效Java序列化实现,来逐步取代hessian2.其中,Kryo是一种非常成熟的序列化实现,已经在Twitter.Group

  • Java实现几种序列化方式总结

    0.前言 本文主要对几种常见Java序列化方式进行实现.包括Java原生以流的方法进行的序列化.Json序列化.FastJson序列化.Protobuff序列化. 1.Java原生序列化 Java原生序列化方法即通过Java原生流(InputStream和OutputStream之间的转化)的方式进行转化.需要注意的是JavaBean实体类必须实现Serializable接口,否则无法序列化.Java原生序列化代码示例如下所示: package serialize; import java.io

随机推荐