Python使用numpy模块实现矩阵和列表的连接操作方法

Numpy模块被广泛用于科学和数值计算,自然有它的强大之处,之前对于特征处理中需要进行数据列表或者矩阵拼接的时候都是自己写的函数来完成的,今天发现一个好玩的函数,不仅好玩,关键性能强大,那就是Numpy模块自带的矩阵、列表连接函数,实践一下。

#!usr/bin/env python
#encoding:utf-8
from __future__ import division

'''
__Author__:沂水寒城
使用numpy模块实现矩阵的连接操作
'''

import numpy as np

def simple_test():
  '''
  简单的小实验
  '''
  sim_one,sim_two=[1,5,8,0,3,6],[11,5,8,0,3]
  one_list=[[1,2,3],[1,2,1],[3,4,5],[4,5,6]]
  two_list=[[5,6,7],[6,7,8],[6,7,9],[0,4,7],[4,6,0],[2,9,1],[5,8,7],[9,7,8],[3,7,9]]
  three_list=[[0,4,3,7],[4,6,1,0],[2,5,9,1]]
  three_list=np.array(three_list)
  four_list=[[2,9,1],[5,8,7],[9,7,8],[3,7,9]]
  print '对一维列表连接结果为:'
  pring np.concatenate([sim_one,sim_two],axis=0)
  print '对两个矩阵按行连接结果为:'
  print np.concatenate([one_list,two_list],axis=0)
  print '对两个矩阵按列连接结果为:'
  print np.concatenate([one_list,three_list.T],axis=1)
  print np.concatenate([one_list,four_list],axis=1)

if __name__ == '__main__':
  simple_test()

结果如下:

[Decode error - output not utf-8]
[Decode error - output not utf-8]
[ 1 5 8 0 3 6 11 5 8 0 3]
对两个矩阵按行连接结果为:
[[1 2 3]
 [1 2 1]
 [3 4 5]
 [4 5 6]
 [5 6 7]
 [6 7 8]
 [6 7 9]
 [0 4 7]
 [4 6 0]
 [2 9 1]
 [5 8 7]
 [9 7 8]
 [3 7 9]]
对两个矩阵按列连接结果为:
[[1 2 3 0 4 2]
 [1 2 1 4 6 5]
 [3 4 5 3 1 9]
 [4 5 6 7 0 1]]
[[1 2 3 2 9 1]
 [1 2 1 5 8 7]
 [3 4 5 9 7 8]
 [4 5 6 3 7 9]]
[Finished in 0.5s]

np.concatenate()函数中,第一个参数为待合并的矩阵、列表,第二个参数为0则表示是按照行连接数据,为1则表示是按照列连接数据。

从上面结果可以看到对于一维列表,axis参数可以省略,对于二维列表当axis为0时也可以省略

当axis为1时,需要注意被连接的数据矩阵行数列数需要相同才行,否则会报错:

AttributeError: 'list' object has no attribute 'T'

即,当axis为1时,本质上就是将矩阵以行为基准对应行的数据直接连接即可

当axis为1时,本质上就是将矩阵以列为基准将数据以此向下堆放在一起即可

以上这篇Python使用numpy模块实现矩阵和列表的连接操作方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python使用numpy模块创建数组操作示例

    本文实例讲述了Python使用numpy模块创建数组操作.分享给大家供大家参考,具体如下: 创建数组 创建ndarray 创建数组最简单的方法就是使用array函数.它接收一切序列型的对象(包括其他数组),然后产生一个新的含有传入数据的Numpy数组. array函数创建数组 import numpy as np ndarray1 = np.array([1, 2, 3, 4]) ndarray2 = np.array(list('abcdefg')) ndarray3 = np.array([

  • Python numpy中矩阵的基本用法汇总

    Python矩阵的基本用法 mat()函数将目标数据的类型转化成矩阵(matrix) 1,mat()函数和array()函数的区别 Numpy函数库中存在两种不同的数据类型(矩阵matrix和数组array),都可以用于处理行列表示的数字元素,虽然他们看起来很相似,但是在这两个数据类型上执行相同的数学运算可能得到不同的结果,其中Numpy函数库中的matrix与MATLAB中matrices等价. 直接看一个例子: import numpy as np a = np.mat('1 3;5 7')

  • Python中的Numpy矩阵操作

    Numpy 通过观察Python的自有数据类型,我们可以发现Python原生并不提供多维数组的操作,那么为了处理矩阵,就需要使用第三方提供的相关的包. NumPy 是一个非常优秀的提供矩阵操作的包.NumPy的主要目标,就是提供多维数组,从而实现矩阵操作. NumPy's main object is the homogeneous multidimensional array. It is a table of elements (usually numbers), all of the sa

  • Python中矩阵库Numpy基本操作详解

    NumPy是一个关于矩阵运算的库,熟悉Matlab的都应该清楚,这个库就是让python能够进行矩阵话的操作,而不用去写循环操作. 下面对numpy中的操作进行总结. numpy包含两种基本的数据类型:数组和矩阵. 数组(Arrays) >>> from numpy import * >>> a1=array([1,1,1]) #定义一个数组 >>> a2=array([2,2,2]) >>> a1+a2 #对于元素相加 array(

  • Python的numpy库中将矩阵转换为列表等函数的方法

    这篇文章主要介绍Python的numpy库中的一些函数,做备份,以便查找. (1)将矩阵转换为列表的函数:numpy.matrix.tolist() 返回list列表 Examples >>> >>> x = np.matrix(np.arange(12).reshape((3,4))); x matrix([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> x.tolist() [[0, 1, 2

  • Python使用numpy模块实现矩阵和列表的连接操作方法

    Numpy模块被广泛用于科学和数值计算,自然有它的强大之处,之前对于特征处理中需要进行数据列表或者矩阵拼接的时候都是自己写的函数来完成的,今天发现一个好玩的函数,不仅好玩,关键性能强大,那就是Numpy模块自带的矩阵.列表连接函数,实践一下. #!usr/bin/env python #encoding:utf-8 from __future__ import division ''' __Author__:沂水寒城 使用numpy模块实现矩阵的连接操作 ''' import numpy as

  • 初识python的numpy模块

    目录 一.array类型 1.1array类型的基本使用 1.2对更高维度数据的处理 1.3Numpy创建特殊类型的array类型 1.3.1生成全为0或全为1的array 1.3.2np.arrange()和np.linspace() 1.4Numpy基础计算演示 二.线性代数相关 三.矩阵的高级函数-随机数矩阵 四.总结 Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展.Numpy是python中众多机器学习库的依赖,这些库通过Nu

  • Python中Numpy模块使用详解

    目录 NumPy ndarray对象 ​ ​Numpy数据类型​​ Numpy数组属性 NumPy NumPy(Numerical Python) 是 Python 的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.Nupmy可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix)).据说NumPy将Python相当于变成一种免费的更强大的MatLab系统.

  • Python中numpy模块常见用法demo实例小结

    本文实例总结了Python中numpy模块常见用法.分享给大家供大家参考,具体如下: import numpy as np arr = np.array([[1,2,3], [2,3,4]]) print(arr) print(type(arr)) print('number of dim:', arr.ndim) print('shape:', arr.shape) print('size:', arr.size) [[1 2 3]  [2 3 4]] number of dim: 2 sha

  • python的numpy模块实现逻辑回归模型

    使用python的numpy模块实现逻辑回归模型的代码,供大家参考,具体内容如下 使用了numpy模块,pandas模块,matplotlib模块 1.初始化参数 def initial_para(nums_feature):     """initial the weights and bias which is zero"""     #nums_feature是输入数据的属性数目,因此权重w是[1, nums_feature]维     #

  • python的numpy模块安装不成功简单解决方法总结

    为了画个图,被numpy这个模块的安装真的折腾疯了!!!一直装不上,花了几个小时,看了网上的很多教程.方法发现总结得不是很全,这里总结一下,防止大家再出现这个问题没有解决方法. Python的魅力之一,就是拥有众多功能强大的插件,但是这些插件的寻找.安装.升级在windows系统上却非常之麻烦.首先安装完Python后需要在系统配置环境变量,接下来又要安装Setuptools,而且安装过程中还会报编码错误,对于需要拷贝源码安装的还需要去CMD里打命令,还得小心翼翼避免打错参数,如果没有一位有经验

  • Python使用Numpy模块读取文件并绘制图片

    代码如下 import pandas as pd import matplotlib.pyplot as plt import numpy as np data = np.loadtxt('distance.txt',dtype = np.int) print(data) x = data[:,0] # 设置第1列数据为x轴数据. y = np.log(data[:,1]) # 设置第2列为y轴数据,计算自然对数后赋值给y, 注意如果取以10为底的对数,则需要使用log10方法. print(x

  • Python基于numpy模块实现回归预测

    代码如下 import numpy as np from matplotlib import pyplot as plt # 用numpy生成数据t ,y t = np.arange(1,10,1) y = 0.9 * t + np.sin(t) model = np.polyfit(t, y ,deg=1) # np.polyfit是numpy提供的加分分析方法,deg=1,指定模型为1阶的,返回值model为获得的模型 t2 = np.arange(-2,12,0.5) # 再生成一个间隔为

随机推荐