python multiprocessing多进程变量共享与加锁的实现

python多进程和多线程是大家会重点了解的部分,因为很多工作如果并没有前后相互依赖关系的话其实顺序并不是非常的重要,采用顺序执行的话就必定会造成无谓的等待,任凭cpu和内存白白浪费,这是我们不想看到的。

为了解决这个问题,我们就可以采用多线程或者多进程的方式,(多线程我们之后再讲),而这两者之间是有本质区别的。就内存而言,已知进程是在执行过程中有独立的内存单元的,而多个线程是共享内存的,这是多进程和多线程的一大区别。

利用Value在不同进程中同步变量

在多进程中,由于进程之间内存相互是隔离的,所以无法在多个进程中用直接读取的方式共享变量,这时候就可以用multiprocessing库中的 Value在各自隔离的进程中共享变量。

下面是一个多进程的例子:

假设有一个counter用来记录程序经过的总循环次数,每调用一次count函数之后counter就会增加20,在主程序中用循环开10个进程分别调用count函数,那么理想状态下,在十个进程中共享的counter值到程序结束后应该是200。

from multiprocessing import Process, Value
import time

def count(v):
  for i in range(20):
    time.sleep(0.01)
    v.value += 1

def main():
  value = Value('i',0)
  processes = [Process(target=count, args=(value,)) for i in range(10)]

  for p in processes:
    p.start()
  for p in processes:
    p.join()

  print(value.value)

if __name__ == '__main__':

  for i in range(10):
    main()

运行这个例子,会得到怎样的结果呢?

188
180
168
186
183
179
186
181
166
186

我在主程序里运行了十次这个程序,而最后的结果是160-180之间,总之,没有一次到200。这是什么原因呢?

相信很多人都已经明白了问题所在,那就是因为在multiprocessing库中的Value是细粒度的,Value中有一个ctypes类型的对象,拥有一个value属性来表征内存中实际的对象。Value可以保证同时只有一个单独的线程或进程在读或者写value值。这么看起来没有什么问题。

然而在第一个进程加载value值的时候,程序却不能阻止第二个进程加载旧的值。两个进程都会把value拷贝到自己的私有内存然后进行处理,并写回到共享值里。

那么这么会出现什么问题呢?

最后的共享值只接收到了一次值的增加,而非两次。

利用Lock在不同进程共享变量时加锁

上面的问题其实可以用一个非常简单的方法解决,我们只需要调用multiprocessing库中的Lock (锁)就可以保证一次只能有一个进程访问这个共享变量。修改后的代码如下:

from multiprocessing import Process, Value, Lock
from time import sleep

def count(x,lock):
  for i in range(20):
    sleep(0.01)
    with lock:
      x.value += 1

def main():
  counter = Value('i',0)
  lock = Lock()
  processes = [Process(target=count,args=(counter,lock)) for i in range(10)]
  for p in processes:
    p.start()
  for p in processes:
    p.join()

  print(counter.value)

if __name__ == '__main__':
  for i in range(10):
    main()

这样一来,输出的结果就会恒定为200了。

一些补充

1. 调用get_lock() 函数

其实Value这个包里已经包含了锁的概念,如果调用get_lock() 函数就可以自动给共享变量加锁。这样其实是比较推荐的方式,因为这样就不需要同时调用两个包。修改如下:

from multiprocessing import Process, Value
from time import sleep

def count(x):
  for i in range(20):
    global counter # 声明全局变量
    sleep(0.01)
    with counter.get_lock(): # 直接调用get_lock()函数获取锁
      x.value += 1

def main():
  processes = [Process(target=count, args=(counter,)) for i in range(10)]
  for p in processes:
    p.start()
  for p in processes:
    p.join()

  print(counter.value)

if __name__ == '__main__':
  counter = Value('i', 0) # 需要把全局变量移到主程序
  main()

上面的程序更加明确,且最终结果也是200。

2. 使用 multiprocessing.RawValue

整个multiprocessing包里刚刚调用的Value和Lock还可以统一被 multiprocessing.RawValue取代。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python多进程并发(multiprocessing)用法实例详解

    本文实例讲述了Python多进程并发(multiprocessing)用法.分享给大家供大家参考.具体分析如下: 由于Python设计的限制(我说的是咱们常用的CPython).最多只能用满1个CPU核心. Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情.借助这个包,可以轻松完成从单进程到并发执行的转换. 1.新建单一进程 如果我们新建少量进程,可以如下: import multiprocessing import t

  • Python Multiprocessing多进程 使用tqdm显示进度条的实现

    1.背景 在python运行一些,计算复杂度比较高的函数时,服务器端单核CPU的情况比较耗时,因此需要多CPU使用多进程加快速度 2.函数要求 笔者使用的是:pathos.multiprocessing 库,进度条显示用tqdm库,安装方法: pip install pathos 安装完成后 from pathos.multiprocessing import ProcessingPool as Pool from tqdm import tqdm 这边使用pathos的原因是因为,multip

  • 简单学习Python多进程Multiprocessing

    1.1 什么是 Multiprocessing 多线程在同一时间只能处理一个任务. 可把任务平均分配给每个核,而每个核具有自己的运算空间. 1.2 添加进程 Process 与线程类似,如下所示,但是该程序直接运行无结果,因为IDLE不支持多进程,在命令行终端运行才有结果显示 import multiprocessing as mp def job(a,b): print('abc') if __name__=='__main__': p1=mp.Process(target=job,args=

  • Python多进程multiprocessing.Pool类详解

    multiprocessing模块 multiprocessing包是Python中的多进程管理包.它与 threading.Thread类似,可以利用multiprocessing.Process对象来创建一个进程.该进程可以允许放在Python程序内部编写的函数中.该Process对象与Thread对象的用法相同,拥有is_alive().join([timeout]).run().start().terminate()等方法.属性有:authkey.daemon(要通过start()设置)

  • Python多进程池 multiprocessing Pool用法示例

    本文实例讲述了Python多进程池 multiprocessing Pool用法.分享给大家供大家参考,具体如下: 1. 背景 由于需要写python程序, 定时.大量发送htttp请求,并对结果进行处理. 参考其他代码有进程池,记录一下. 2. 多进程 vs 多线程 c++程序中,单个模块通常是单进程,会启动几十.上百个线程,充分发挥机器性能.(目前c++11有了std::thread编程多线程很方便,可以参考我之前的博客) shell脚本中,都是多进程后台执行.({ ...} &, 可以参考

  • python基于multiprocessing的多进程创建方法

    本文实例讲述了python基于multiprocessing的多进程创建方法.分享给大家供大家参考.具体如下: import multiprocessing import time def clock(interval): while True: print ("the time is %s"% time.time()) time.sleep(interval) if __name__=="__main__": p = multiprocessing.Process

  • Python multiprocessing多进程原理与应用示例

    本文实例讲述了Python multiprocessing多进程原理与应用.分享给大家供大家参考,具体如下: multiprocessing包是Python中的多进程管理包,可以利用multiprocessing.Process对象来创建进程,Process对象拥有is_alive().join([timeout]).run().start().terminate()等方法. multprocessing模块的核心就是使管理进程像管理线程一样方便,每个进程有自己独立的GIL,所以不存在进程间争抢

  • Python多进程库multiprocessing中进程池Pool类的使用详解

    问题起因 最近要将一个文本分割成好几个topic,每个topic设计一个regressor,各regressor是相互独立的,最后汇总所有topic的regressor得到总得预测结果.没错!类似bagging ensemble!只是我没有抽样.文本不大,大概3000行,topic个数为8,于是我写了一个串行的程序,一个topic算完之后再算另一个topic.可是我在每个topic中用了GridSearchCV来调参,又要选特征又要调整regressor的参数,导致参数组合一共有1782种.我真

  • Python3多进程 multiprocessing 模块实例详解

    本文实例讲述了Python3多进程 multiprocessing 模块.分享给大家供大家参考,具体如下: 多进程 Multiprocessing 模块 multiprocessing 模块官方说明文档 Process 类 Process 类用来描述一个进程对象.创建子进程的时候,只需要传入一个执行函数和函数的参数即可完成 Process 示例的创建. star() 方法启动进程, join() 方法实现进程间的同步,等待所有进程退出. close() 用来阻止多余的进程涌入进程池 Pool 造

  • Python多进程multiprocessing用法实例分析

    本文实例讲述了Python多进程multiprocessing用法.分享给大家供大家参考,具体如下: mutilprocess简介 像线程一样管理进程,这个是mutilprocess的核心,他与threading很是相像,对多核CPU的利用率会比threading好的多. 简单的创建进程: import multiprocessing def worker(num): """thread worker function""" print 'Wor

随机推荐