详解Java HashMap实现原理

HashMap是基于哈希表的Map接口实现,提供了所有可选的映射操作,并允许使用null值和null建,不同步且不保证映射顺序。下面记录一下研究HashMap实现原理。

HashMap内部存储

在HashMap内部,通过维护一个 瞬时变量数组table (又称:桶) 来存储所有的键值对关系,桶 是个Entry对象数组,桶 的大小可以按需调整大小,长度必须是2的次幂。如下代码:

/**
  * 一个空的entry数组,桶 的默认值
  */
 static final Entry<?,?>[] EMPTY_TABLE = {};
 /**
  * 桶,按需调整大小,但必须是2的次幂
  */
 transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;

初始容量与负载因子

HashMap有两个参数影响性能,初始容量和负载因子。容量是哈希表中 桶 的数量,初始容量只是哈希表在创建时的容量,负载因子是哈希表在其容量自动增加之前可以达到多满的一种尺度。当哈希表中条目数超出了负载因子与当前容量的乘积时,则要对该Hash表进行rehash操作(即重建内部数据结构),重建时以当前容量的两倍数目新建。可以通过构造器设置初始容量与负载因子,默认初始容量是16个条目,最大容量是2^30次方个条目,默认负载因子是0.75

桶 就像一个存水的水桶,它默认的初始存水容量是16个单位的水,默认在灌水灌到16*0.75时,在下次添加数据时会先扩充容量,扩充到32单位。0.75就是负载因子,初始容量与负载因子可以通过创建水桶的时候进行设置。水桶最大的容量是2的30次方个单位的水。当初始容量设置的数量大于最大容量时,以最大容量为准。当扩展时如果大于等于最大容量时则直接返回。

如下为HashMap的部分源码,定义了默认初始容量、负载因子及其他一些常量:

/**
  * 默认初始化容量,必须为2的次幂The default initial capacity - MUST be a power of two.
  */
 static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
 /**
  * 最大容量,如果通过构造函数参数中传递初始化容量大于该最大容量了,也会使用该容量为初始化容量  * 必须是2的次幂且小于等于2的30次方  */
 static final int MAXIMUM_CAPACITY = 1 << 30;
 /**
  * 默认的负载因子,可以通过构造函数指定
  */
 static final float DEFAULT_LOAD_FACTOR = 0.75f;
 /**
  * 一个空的数组表,当 桶没有初始化的时候
  */
 static final Entry<?,?>[] EMPTY_TABLE = {};
 /**
  * 桶 , 存储所有的键值对条目,可以按需调整大小,长度大小必须为2的次幂
  */
 transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;
 /**
  * Map中键值对的数量,在每次新增或删除的时候都会对size进行+1或者-1操作.
  */
 transient int size;
 /**
  * 负载值,需要调整大小的临界值,为:(capacity * load factor).在每次调整大小后会使用新的容量计算一下
  * @serial
  */
 // If table == EMPTY_TABLE then this is the initial capacity at which the
 // table will be created when inflated.
 int threshold;
 /**
  * 负载因子,如果构造函数中没有指定,则采用默认的负载因子,
  *
  * @serial
  */
 final float loadFactor;
 /**
  * HashMap结构修改次数,结构修改时改变HashMap中的映射数量或修改其内部结构(例如,* rehash方法,重建内部数据结构),此字段用于在  * HashMap的集合视图上生成的迭代器都处理成快速失败的
  */
 transient int modCount;

初始容量与负载因子性能调整

通常,默认负载因子(0.75)在时间和空间成本上寻求一种折中。负载因子过高虽然减少了空间开销,但同时也增加了查询成本(在大多数HashMap类的操作中,包括get和put操作,都反映了这一点)。在设置初始容量时应该考虑到映射中所需的条目数及其负载因子,以便最大限度的减少rehash操作次数。如果初始容量大于最大条目数除以加载因子,则不会发生rehash操作。

如果很多映射关系要存储在HashMap实例中,则相对于按需执行自动的rehash操作以增大表的容量来说,使用足够大的初始容量创建它将使得映射关系能更有效的存储。

如下为重建HashMap数据结构的代码:

void resize(int newCapacity) {
  Entry[] oldTable = table;
  int oldCapacity = oldTable.length;
  if (oldCapacity == MAXIMUM_CAPACITY) { // 如果容量已达最大限制,则设置下负载值后直接返回
   threshold = Integer.MAX_VALUE;
   return;
  }
  // 创建新的table存储数据
  Entry[] newTable = new Entry[newCapacity];
  // 将旧table中的数据转存到新table中去,这一步会花费比较多的时间
  transfer(newTable, initHashSeedAsNeeded(newCapacity));
  table = newTable;
  // 最后设置下下次调整大小的负载值
  threshold = (int) Math.min(newCapacity * loadFactor,
    MAXIMUM_CAPACITY + 1);
}

HashMap构造方法

第四个构造方法是以已经存在的Map创建一个新的HashMap,稍后再说,前三个构造方法,其实最终调用的都是第三个带两个参数的方法,如果没有传递参数则使用默认的数值,代码如下:

/**
   * Constructs an empty <tt>HashMap</tt> with the default initial capacity
   * (16) and the default load factor (0.75).
   */
  public HashMap() {
    this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
  }
  /**
   * Constructs an empty <tt>HashMap</tt> with the specified initial
   * capacity and the default load factor (0.75).
   *
   * @param initialCapacity the initial capacity.
   * @throws IllegalArgumentException if the initial capacity is negative.
   */
  public HashMap(int initialCapacity) {
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
  }
  /**
   * Constructs an empty <tt>HashMap</tt> with the specified initial
   * capacity and load factor.
   *
   * @param initialCapacity the initial capacity
   * @param loadFactor   the load factor
   * @throws IllegalArgumentException if the initial capacity is negative
   *     or the load factor is nonpositive
   */
  public HashMap(int initialCapacity, float loadFactor) {
    if (initialCapacity < 0)
      throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
    if (initialCapacity > MAXIMUM_CAPACITY)
      initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
      throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
    this.loadFactor = loadFactor;
    threshold = initialCapacity;
    init();
  }

由上可以看出,在构造函数中,如果初始容量给的大于最大容量,则直接以最大容量代替。

put方法

接下来就看看HashMap中比较重要的部分

/**
   * 在此映射中关联指定值与指定建。如果该映射以前包含了一个该键的映射关系,则旧值被替换
   *
   * @param 指定将要关联的键
   * @param 指定将要关联的值
   * @return 与key关联的旧值,如果key没有任何映射关系,则返回null(返回null还可能表示该映射之前将null与key关联)
   */
  public V put(K key, V value) {
    if (table == EMPTY_TABLE) {
      inflateTable(threshold);
    }
    if (key == null)
      return putForNullKey(value);
    int hash = hash(key);
    int i = indexFor(hash, table.length);
    for (Entry<K,V> e = table[i]; e != null; e = e.next) {
      Object k;
      if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
        V oldValue = e.value;
        e.value = value;
        e.recordAccess(this);
        return oldValue;
      }
    }
    modCount++;
    addEntry(hash, key, value, i);
    return null;
  }

1. 首先put方法中,先判断 桶 是否为默认的未初始化状态,如果未初始化则调用 inflateTable 方法去初始化,然后判断参数key是否为null,如果为null,则调用putForNullKey专门进行放key为null的数据,putForNullKey方法与下面的第3步开始其实都是一样的,只不过key为null的数据默认存储位置就是第一个,即下标默认为0。

2. 如果key不是null,则调用hash()方法获取key的hash值,可以根据hash值、桶的长度通过indexFor方法计算该key可以放到桶的位置。

3. Entry对象中有一个属性next,可以形成一个单向链表,用来存储哈希值相同的元素。因此当计算出来key的hash值重复时,存储位置也会重复,只要判断一下存储位置的元素及该元素的next属性链表中是否与给定的key和key的hash值是否完全一致就可以了。如果有完全一致的,代表已经存在,则替换旧值,并把旧值做为返回值直接返回。

4. 把结构修改次数自增1

5. 调用addEntry方法将新的键值对增加到HashMap中。addEntity方法首先判断当前条目数据是否已经大于等于负载值(桶的容量*负载因子)且桶的指定位置不为null,如果已经大于且指定位置不为null,则调调整桶的容量为当前容量的2倍,调整桶的容量参照上面的初始容量与负载因子性能调整 目录。重新计算Hash值,计算存放位置。调用createEntry方法存放到 桶 中

void addEntry(int hash, K key, V value, int bucketIndex) {
    if ((size >= threshold) && (null != table[bucketIndex])) {
      resize(2 * table.length);
      hash = (null != key) ? hash(key) : 0;
      bucketIndex = indexFor(hash, table.length);
    }
    createEntry(hash, key, value, bucketIndex);
  }
  void createEntry(int hash, K key, V value, int bucketIndex) {
    Entry<K,V> e = table[bucketIndex];
    table[bucketIndex] = new Entry<>(hash, key, value, e);
    size++;
  }
  /**
  * Entry构造方法,创建一个新的Entry.
  */
  Entry(int h, K k, V v, Entry<K,V> n) {
    value = v;
    next = n;
    key = k;
    hash = h;
  }

6. 在 createEntry 方法中,首先获取指定位置的entry,然后新生成一个entry,在生成entry时把原有的entry存储到新生成的entry的next属性中(参考Entry的构造方法),并把指定位置的entry替换成新生成的。

因为新增条目的时候,需要计算hash值,长度不够时需要调整长度,当计算的存储位置已有元素的时候需要进行链表式的存储,所以使用HashMap新增操作的效率并不是太高。

get方法

首先看下get方法的源码:

/**
   * 返回指定键所映射的值;如果对于该键来说,此映射不包含任何映射关系,则返回null
   * 返回null值并不一定表明该映射不包含该键的映射,也可能改映射将该键显示的映射为null,可使用containsKey操作来区分这两种情况
   * @see #put(Object, Object)
   */
  public V get(Object key) {
    if (key == null)
      return getForNullKey();
    Entry<K,V> entry = getEntry(key);
    return null == entry ? null : entry.getValue();
  }
  final Entry<K,V> getEntry(Object key) {
    if (size == 0) {
      return null;
    }
    int hash = (key == null) ? 0 : hash(key);
    for (Entry<K,V> e = table[indexFor(hash, table.length)];
       e != null;
       e = e.next) {
      Object k;
      if (e.hash == hash &&
        ((k = e.key) == key || (key != null && key.equals(k))))
        return e;
    }
    return null;
}

get方法实现较简单,以下是几个步骤:

  1. 首先判断key是否为null,如果为null,则调用 getForNullKey 方法来获取,如果不为null则调用 getEntry 方法来获取。getForNullKey方法与getEntity基本上一致,只不过少了一个步骤,就是默认的key为null的存储位置在第一个,即下标为0,没有去计算位置而已。
  2. getEntity方法根据key计算哈希值,然后用哈希值、桶的长度计算存储位置。
  3. getEntity以获取指定位置的entry作为遍历的开始,遍历entry的next单链表,如果entry的哈希值与计算的哈希值一致且entry的key与指定的相等则返回entry
  4. 根据getEntity返回的值,get方法返回对应的值。

通过查看get的源码可以发现,get方法通过key的哈希值与桶的长度计算存储位置,基本上一下就能定位到要找的元素,即使再遍历几个重复哈希值的key,也是很快速的,因为哈希值相对唯一,所以HashMap对于查找性能是非常快的。

自定义对象作为HashMap的键

class User {
  // 身份证号码
  protected int idNumber;
  public User(int id){
    idNumber = id;
  }
}
public class TestUser{
  public static void main(String[] args) {
    Map<User, String> map = new HashMap<User, String>();
    for (int i=0; i<5; i++) {
      map.put(new User(i), "姓名: " + i);
    }
    System.out.println("User3 的姓名:" + map.get(new User(3)));
  }
}
输出:
User3 的姓名:null

如上代码,通过自定义的User类实例作为HashMap的对象时,在打印的时候是无法找到User3的姓名的,因为User类自动继承基类Object,所以这里会自动使用Object的hashCode方法生成哈希值,而它默认是使用对象的地址计算哈希值的。因此new User(3)生成的第一个实例的哈希值与生成的第二个实例的哈希值是不一样的。但是如果只需要简单的覆盖hashCode方法,也是无法正常运作的,除非同时覆盖equals方法,它也是Object的一部分。HashMap使用equals()判断当前的键是否与表中存在的键相同,可以参考上面的get或put方法。

正确equals()方法必须满足下列5个条件:---参考《Java编程思想》—489页

  1. 自反性。对任意x,x.equals(x)一定返回true
  2. 对称性。对任意x和y,如果有y.equals(x)返回true,则x.equals(y)也返回true
  3. 传递性。对任意x,y,z,如果有x.equals(y)返回true,y.equals(z)返回true,则x.equals(z)一定返回true
  4. 一致性,对任意x和y,如果对象中用于等价比较的信息没有改变,那么无论调用x.equals(y)多少次,返回的结果应该保持一致,要么一致是true,要么一致是false.
  5. 对任何不是null的x,x.equals(null)一定返回false

再次强调:默认的Object.equals()只是比较对象的地址,所以一个new User(3)并不等于另一个new User(3)。因此,如果要使用自己的类作为HashMap的键,必须同时重载hashCode()和equals().

如下代码可以正常运作:

class User {
  // 身份证号码
  protected int idNumber;
  public User(int id){
    idNumber = id;
  }
  @Override
  public int hashCode() {
    return idNumber;
  }
  @Override
  public boolean equals(Object obj) {
    return obj instanceof User && (idNumber==((User)obj).idNumber);
  }
}
public class TestUser{
  public static void main(String[] args) {
    Map<User, String> map = new HashMap<User, String>();
    for (int i=0; i<5; i++) {
      map.put(new User(i), "姓名: " + i);
    }
    System.out.println("User3 的姓名:" + map.get(new User(3)));
  }
}
输出:
User3 的姓名:姓名: 3

上面只是简单的在hashCode中返回了idNumber作为唯一的判别,用户也可以根据自己的业务实现自己的方法。在equals方法中,instanceof会悄悄的检查对象是否为null,如果instanceof左边的参数为null,则会返回false,如果equals()的参数不为null且类型正确,则基于每个对象中的实际的idNumber进行比较。从输出可以看出,现在的方式是正确的。

参考:

《Java编程思想》

JDK 1.6 中文帮助手册

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,同时也希望多多支持我们!

(0)

相关推荐

  • 深入解析java HashMap实现原理

    Mark一下,同时可以很好的结合hashCode()和equals()方法,覆盖equals方法时最好覆盖hashcode(),保证equals的两个对象,hashcode也相等,反过来:hashcode()不等,一定能推出equals()也不等:hashcode()相等,equals()可能相等,也可能不等. 因为HashMap在get时,先比较hashcode,再比较equals,hashcode==&&equals,两者都为true,则认为是相同的key 1.    HashMap概

  • Java HashMap的工作原理

    大部分Java开发者都在使用Map,特别是HashMap.HashMap是一种简单但强大的方式去存储和获取数据.但有多少开发者知道HashMap内部如何工作呢?几天前,我阅读了java.util.HashMap的大量源代码(包括Java 7 和Java 8),来深入理解这个基础的数据结构.在这篇文章中,我会解释java.util.HashMap的实现,描述Java 8实现中添加的新特性,并讨论性能.内存以及使用HashMap时的一些已知问题. 内部存储 Java HashMap类实现了Map<K

  • java 中HashMap实现原理深入理解

    1. HashMap的数据结构 数据结构中有数组和链表来实现对数据的存储,但这两者基本上是两个极端.       数组 数组存储区间是连续的,占用内存严重,故空间复杂的很大.但数组的二分查找时间复杂度小,为O(1):数组的特点是:寻址容易,插入和删除困难: 链表 链表存储区间离散,占用内存比较宽松,故空间复杂度很小,但时间复杂度很大,达O(N).链表的特点是:寻址困难,插入和删除容易. 哈希表 那么我们能不能综合两者的特性,做出一种寻址容易,插入删除也容易的数据结构?答案是肯定的,这就是我们要提

  • java中HashMap的原理分析

    我们先来看这样的一道面试题: 在 HashMap 中存放的一系列键值对,其中键为某个我们自定义的类型.放入 HashMap 后,我们在外部把某一个 key 的属性进行更改,然后我们再用这个 key 从 HashMap 里取出元素,这时候 HashMap 会返回什么? 文中已给出示例代码与答案,但关于HashMap的原理没有做出解释. 1. 特性 我们可以用任何类作为HashMap的key,但是对于这些类应该有什么限制条件呢?且看下面的代码: public class Person { priva

  • java HashMap 的工作原理详解

    HashMap的工作原理是近年来常见的Java面试题.几乎每个Java程序员都知道HashMap,都知道哪里要用HashMap,知道Hashtable和HashMap之间的区别,那么为何这道面试题如此特殊呢?是因为这道题考察的深度很深.这题经常出现在高级或中高级面试中.投资银行更喜欢问这个问题,甚至会要求你实现HashMap来考察你的编程能力.ConcurrentHashMap和其它同步集合的引入让这道题变得更加复杂.让我们开始探索的旅程吧! 先来些简单的问题 "你用过HashMap吗?&quo

  • Java8 HashMap的实现原理分析

    前言:Java8之后新增挺多新东西,在网上找了些相关资料,关于HashMap在自己被血虐之后痛定思痛决定整理一下相关知识方便自己看.图和有些内容参考的这个文章:http://www.jb51.net/article/80446.htm HashMap的存储结构如图:一个桶(bucket)上的节点多于8个则存储结构是红黑树,小于8个是单向链表. 1:HashMap的一些属性 public class HashMap<k,v> extends AbstractMap<k,v> impl

  • java无锁hashmap原理与实现详解

    java多线程环境中应用HashMap,主要有以下几种选择:使用线程安全的java.util.Hashtable作为替代​使用java.util.Collections.synchronizedMap方法,将已有的HashMap对象包装为线程安全的.使用java.util.concurrent.ConcurrentHashMap类作为替代,它具有非常好的性能.而以上几种方法在实现的具体细节上,都或多或少地用到了互斥锁.互斥锁会造成线程阻塞,降低运行效率,并有可能产生死锁.优先级翻转等一系列问题.

  • java HashMap内部实现原理详解

    详解HashMap内部实现原理 内部数据结构 static class Entry<K,V> implements Map.Entry<K,V> { final K key; V value; Entry<K,V> next; int hash; 从上面的数据结构定义可以看出,HashMap存元素的是一组键值对的链表,以什么形式存储呢 transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABL

  • 详解 Java HashMap 实现原理

    HashMap 是 Java 中最常见数据结构之一,它能够在 O(1) 时间复杂度存储键值对和根据键值读取值操作.本文将分析其内部实现原理(基于 jdk1.8.0_231). 数据结构 HashMap 是基于哈希值的一种映射,所谓映射,即可以根据 key 获取到相应的 value.例如:数组是一种的映射,根据下标能够取到值.不过相对于数组,HashMap 占用的存储空间更小,复杂度却同样为 O(1). HashMap 内部定义了一排"桶",用一个叫 table 的 Node 数组表示:

  • 详解Java HashMap实现原理

    HashMap是基于哈希表的Map接口实现,提供了所有可选的映射操作,并允许使用null值和null建,不同步且不保证映射顺序.下面记录一下研究HashMap实现原理. HashMap内部存储 在HashMap内部,通过维护一个 瞬时变量数组table (又称:桶) 来存储所有的键值对关系,桶 是个Entry对象数组,桶 的大小可以按需调整大小,长度必须是2的次幂.如下代码: /** * 一个空的entry数组,桶 的默认值 */ static final Entry<?,?>[] EMPTY

  • 详解Java Bellman-Ford算法原理及实现

    目录 一 点睛 二 算法步骤 三 算法实现 四 测试 一 点睛 如果遇到负权边,则在没有负环(回路的权值之和为负)存在时,可以采用 Bellman-Ford 算法求解最短路径.该算法的优点是变的权值可以是负数.实现简单,缺点是时间复杂度过高.但是该算法可以进行若干种优化,以提高效率. Bellman-Ford 算法与 Dijkstra 算法类似,都是以松弛操作作为基础.Dijkstra 算法以贪心法选取未被处理的具有最小权值的节点,然后对其进行松弛操作:而 Bellman-Ford 算法对所有边

  • 详解Java回调的原理与实现

    回调原本应该是一个非常简单的概念,但是可能因为平时只用系统为我们写好的回调的接口了,自己很少实现回调,所以在自己实现回调的时候还是有一点点晕的,现在写这篇文章记录一下,也和大家分享一下怎么写回调接口. 回调 回调的概念:举个例子就是,我们想要问别人一道题,我们把题跟对方说了一下,对方说好,等我做完这道题,我就告诉你,这个时候就用到了回调,因为我们并不知道对方什么时候会做完,而是对方做完了来主动找我们. 同步回调 代码运行到某一个位置的时候,如果遇到了需要回调的代码,会在这里等待,等待回调结果返回

  • 详解Java前缀树Trie的原理及代码实现

    目录 Trie的概念 Trie的实现 基本结构 构建Trie 查找字符串 Trie的总结 Trie的概念 Trie(发音类似 “try”)又被称为前缀树.字典树.Trie利用字符串的公共前缀来高效地存储和检索字符串数据集中的关键词,最大限度地减少无谓的字符串比较,其核心思想是用空间换时间. Trie树可被用来实现字符串查询.前缀查询.词频统计.自动拼写.补完检查等等功能. Trie树的三个性质: 根节点不包含字符,除根节点外每一个节点都只包含一个字符. 从根节点到某一节点,路径上经过的字符连接起

  • 详解Java线程池和Executor原理的分析

    详解Java线程池和Executor原理的分析 线程池作用与基本知识 在开始之前,我们先来讨论下"线程池"这个概念."线程池",顾名思义就是一个线程缓存.它是一个或者多个线程的集合,用户可以把需要执行的任务简单地扔给线程池,而不用过多的纠结与执行的细节.那么线程池有哪些作用?或者说与直接用Thread相比,有什么优势?我简单总结了以下几点: 减小线程创建和销毁带来的消耗 对于Java Thread的实现,我在前面的一篇blog中进行了分析.Java Thread与内

  • 详解Java 中泛型的实现原理

    泛型是 Java 开发中常用的技术,了解泛型的几种形式和实现泛型的基本原理,有助于写出更优质的代码.本文总结了 Java 泛型的三种形式以及泛型实现原理. 泛型 泛型的本质是对类型进行参数化,在代码逻辑不关注具体的数据类型时使用.例如:实现一个通用的排序算法,此时关注的是算法本身,而非排序的对象的类型. 泛型方法 如下定义了一个泛型方法, 声明了一个类型变量,它可以应用于参数,返回值,和方法内的代码逻辑. class GenericMethod{ public <T> T[] sort(T[]

  • 详解Java TCC分布式事务实现原理

    概述 之前网上看到很多写分布式事务的文章,不过大多都是将分布式事务各种技术方案简单介绍一下.很多朋友看了还是不知道分布式事务到底怎么回事,在项目里到底如何使用. 所以这篇文章,就用大白话+手工绘图,并结合一个电商系统的案例实践,来给大家讲清楚到底什么是 TCC 分布式事务. 业务场景介绍 咱们先来看看业务场景,假设你现在有一个电商系统,里面有一个支付订单的场景. 那对一个订单支付之后,我们需要做下面的步骤: 更改订单的状态为"已支付" 扣减商品库存 给会员增加积分 创建销售出库单通知仓

  • 详解Java的类加载机制及热部署的原理

    一.什么是类加载 类的加载指的是将类的.class文件的二进制数据读入到内存中,将其放在运行数据区的方法去,然后再堆区创建一个java.lang.Class对象,用来封装类在方法区的数据结构.类的加载的最终产品是位于堆区中的Class对象,Class对象封装了类在方法区的数据结构,并且向Java程序员提供了访问方法区的数据结构的接口. 类加载器并不需要等到某个类被"首次主动使用"时再加载它,JVM规范允许类加载器在预料某个类将要被使用时就预先加载它,如果在预先加载的过程中遇到了.cla

  • 详解Java线程池的使用及工作原理

    一.什么是线程池? 线程池是一种用于实现计算机程序并发执行的软件设计模式.线程池维护多个线程,等待由调度程序分配任务以并发执行,该模型提高了性能,并避免了由于为短期任务频繁创建和销毁线程而导致的执行延迟. 二.线程池要解决什么问题? 说到线程池就一定要从线程的生命周期讲起. 从图中可以了解无论任务执行多久,每个线程都要经历从生到死的状态.而使用线程池就是为了避免线程的重复创建,从而节省了线程的New至Runnable, Running至Terminated的时间:同时也会复用线程,最小化的节省系

随机推荐