Python学习笔记之pandas索引列、过滤、分组、求和功能示例

本文实例讲述了Python学习笔记之pandas索引列、过滤、分组、求和功能。分享给大家供大家参考,具体如下:

解析html内容,保存为csv文件
//www.jb51.net/article/162401.htm

前面我们已经把519961(基金编码)这种基金的历史净值明细表html内容抓取到了本地,现在我们还是需要 解析html,取出相关的值,然后保存为csv文件以便pandas来统计分析。

from bs4 import BeautifulSoup
import os
import csv
# 使用 BeautifulSoup 解析html内容
def getFundDetailData(html):
  soup = BeautifulSoup(html,"html.parser")
  rows = soup.find("table").tbody.find_all("tr")
  result = []
  for row in rows:
    tds=row.find_all('td')
    result.append({"fcode": '519961'
            ,"fdate": tds[0].get_text()
           , "NAV": tds[1].get_text()
           , "ACCNAV": tds[2].get_text()
           , "DGR": tds[3].get_text()
           , "pstate":tds[4].get_text()
           , "rstate": tds[5].get_text()
           }
         )
  return result
# 把解析之后的数据写入到csv文件
def writeToCSV():
  data_dir = "../htmls/details"
  all_path = os.listdir(data_dir)
  all_result = []
  for path in all_path:
    if os.path.isfile(os.path.join(data_dir,path)):
      with open(os.path.join(data_dir,path),"rb") as f:
        content = f.read().decode("utf-8")
        f.close()
        all_result = all_result + getFundDetailData(content)
  with open("../csv/519961.csv","w",encoding="utf-8",newline="") as f:
    writer = csv.writer(f)
    writer.writerow(['fcode', 'fdate', 'NAV', "ACCNAV", 'DGR', 'pstate', "rstate"])
    for r in all_result:
      writer.writerow([r["fcode"], r["fdate"], r["NAV"], r["ACCNAV"], r["DGR"], r["pstate"], r["rstate"]])
    f.close()
# 执行
writeToCSV()

pandas 排序、索引列

# coding: utf-8
import pandas
if __name__ == "__main__" :
  # 读取csv文件 创建pandas对象
  pd = pandas.read_csv("./csv/519961.csv", dtype={"fcode":pandas.np.str_}, index_col="fdate") # 把 fdate 这列设置为 索引列
  # 根据索引列 倒序
  print(pd.sort_index(ascending=False))

既然fdate列设置为了索引列,那么如果根据索引获取呢?

# 读取csv文件 创建pandas对象
pd = pandas.read_csv("./csv/519961.csv", dtype={"fcode":pandas.np.str_}, index_col="fdate") # 把 fdate 这列设置为 索引列
pd.index = pandas.to_datetime(pd.index)
print(pd["2017-11-29 "]) # 2017-11-29 519961 1.189  1.189 -1.00% 限制大额申购  开放赎回

2、直接指定fdate列就是日期类型

# 读取csv文件 创建pandas对象
pd = pandas.read_csv("./csv/519961.csv", dtype={"fcode":pandas.np.str_}, index_col="fdate", parse_dates=["fdate"]) # 指明fdate是日期类型
print(pd["2017-11-29 "]) # 2017-11-29 519961 1.189  1.189 -1.00% 限制大额申购  开放赎回

打印索引:

print(pd.index) # 打印 索引

可以看出是DatetimeIndex的索引:

DatetimeIndex(['2015-08-13', '2015-08-12', '2015-08-11', '2015-08-10',
        '2015-08-07', '2015-08-06', '2015-08-05', '2015-08-04',
        '2015-08-03', '2015-07-31',
        ...
        '2015-07-02', '2015-07-01', '2015-06-30', '2015-06-29',
        '2015-06-26', '2015-06-25', '2015-06-24', '2015-06-23',
        '2015-06-19', '2015-06-18'],
       dtype='datetime64[ns]', name='fdate', length=603, freq=None)

3、索引的高级用法

# 取出 2017年7月的 全部数据
print(pd["2017-07"])
# 取出 2017年7月到9月的 数据
print(pd["2017-07":"2017-09"])
# 到2015-07的数据
print(pd[:"2015-07"])
# 取出截至到2015-07的数据
# 然后 倒序
print(pd[:"2015-7"].sort_index(ascending=False))

获取基金日增长率下跌次数最多的月份

result = pd[pd["DGR"].notnull()] # DGR一定要有值
# 过滤掉DGR值里的%号,最后取出小于0的值(负数就表示增长率下跌了 )
result = result[result['DGR'].str.strip("%").astype(pandas.np.float)<0]
# 按照月份 统计DGR跌的次数
result = result.groupby(lambda d:d.strftime("%Y-%m")).size()
# 对DGR跌的次数 倒序,然后取出前面第一个
result = result.sort_values(ascending=False).head(1)
print(result) # 2016-04  12 意思就是2016年4月份 是该基金DGR下跌次数最多的月份

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • python中pandas.DataFrame对行与列求和及添加新行与列示例

    本文介绍的是python中pandas.DataFrame对行与列求和及添加新行与列的相关资料,下面话不多说,来看看详细的介绍吧. 方法如下: 导入模块: from pandas import DataFrame import pandas as pd import numpy as np 生成DataFrame数据 df = DataFrame(np.random.randn(4, 5), columns=['A', 'B', 'C', 'D', 'E']) DataFrame数据预览: A

  • python 使用pandas计算累积求和的方法

    使用pandas下的cumsum函数 cumsum:计算轴向元素累积加和,返回由中间结果组成的数组.重点就是返回值是"由中间结果组成的数组" import numpy as np ''' arr是一个2*2*3三维矩阵,索引值为0,1,2 cumsum(0):实现0轴上的累加:以最外面的数组元素为单位,以[[1,2,3],[8,9,12]]为开始实现后面元素的对应累加 cumsum(1):实现1轴上的累加:以中间数组元素为单位,以[1,2,3]为开始,实现后面元素的对应累加 cumsu

  • 在Python中pandas.DataFrame重置索引名称的实例

    例子: 创建DataFrame ### 导入模块 import numpy as np import pandas as pd import matplotlib.pyplot as plt test = pd.DataFrame({'a':[11,22,33],'b':[44,55,66]}) """ a b 0 11 44 1 22 55 2 33 66 """ 更改列名方法一:rename test.rename(columns={'a':

  • Python3.5 Pandas模块缺失值处理和层次索引实例详解

    本文实例讲述了Python3.5 Pandas模块缺失值处理和层次索引.分享给大家供大家参考,具体如下: 1.pandas缺失值处理 import numpy as np import pandas as pd from pandas import Series,DataFrame df3 = DataFrame([ ["Tom",np.nan,456.67,"M"], ["Merry",34,345.56,np.nan], [np.nan,np

  • python中pandas.DataFrame的简单操作方法(创建、索引、增添与删除)

    前言 最近在网上搜了许多关于pandas.DataFrame的操作说明,都是一些基础的操作,但是这些操作组合起来还是比较费时间去正确操作DataFrame,花了我挺长时间去调整BUG的.我在这里做一些总结,方便你我他.感兴趣的朋友们一起来看看吧. 一.创建DataFrame的简单操作: 1.根据字典创造: In [1]: import pandas as pd In [3]: aa={'one':[1,2,3],'two':[2,3,4],'three':[3,4,5]} In [4]: bb=

  • python pandas 对series和dataframe的重置索引reindex方法

    reindex更多的不是修改pandas对象的索引,而只是修改索引的顺序,如果修改的索引不存在就会使用默认的None代替此行.且不会修改原数组,要修改需要使用赋值语句. series.reindex() import pandas as pd import numpy as np obj = pd.Series(range(4), index=['d', 'b', 'a', 'c']) print obj d 0 b 1 a 2 c 3 dtype: int64 print obj.reinde

  • Python+pandas计算数据相关系数的实例

    本文主要演示pandas中DataFrame对象corr()方法的用法,该方法用来计算DataFrame对象中所有列之间的相关系数(包括pearson相关系数.Kendall Tau相关系数和spearman秩相关). >>> import numpy as np >>> import pandas as pd >>> df = pd.DataFrame({'A':np.random.randint(1, 100, 10), 'B':np.random

  • Python科学计算之Pandas详解

    起步 Pandas最初被作为金融数据分析工具而开发出来,因此 pandas 为时间序列分析提供了很好的支持. Pandas 的名称来自于面板数据(panel data)和python数据分析 (data analysis) .panel data是经济学中关于多维数据集的一个术语,在Pandas中也提供了panel的数据类型. 在我看来,对于 Numpy 以及 Matplotlib ,Pandas可以帮助创建一个非常牢固的用于数据挖掘与分析的基础.而Scipy当然是另一个主要的也十分出色的科学计

  • Python利用pandas计算多个CSV文件数据值的实例

    功能:扫描当前目录下所有CSV文件并对其中文件进行统计,输出统计值到CSV文件 pip install pandas import pandas as pd import glob,os,sys input_path='./' output_fiel='pandas_union_concat.csv' all_files=glob.glob(os.path.join(input_path,'sales_*')) all_data_frames=[] for file in all_files:

  • Python学习笔记之pandas索引列、过滤、分组、求和功能示例

    本文实例讲述了Python学习笔记之pandas索引列.过滤.分组.求和功能.分享给大家供大家参考,具体如下: 解析html内容,保存为csv文件 //www.jb51.net/article/162401.htm 前面我们已经把519961(基金编码)这种基金的历史净值明细表html内容抓取到了本地,现在我们还是需要 解析html,取出相关的值,然后保存为csv文件以便pandas来统计分析. from bs4 import BeautifulSoup import os import csv

  • Python学习笔记之列表和成员运算符及列表相关方法详解

    本文实例讲述了Python学习笔记之列表和成员运算符及列表相关方法.分享给大家供大家参考,具体如下: 列表和成员运算符 列表可以包含我们到目前为止所学的任何数据类型并且可以混合到一起. lst_of_random_things = [1, 3.4, 'a string', True] # 这是一个包含 4 个不同类型元素的列表 print(lst_of_random_things[0]) # 1 获取上述列表的第一个值和最后一个值 print(lst_of_random_things[0]) #

  • 快速入门python学习笔记

    本篇不是教给大家如何去学习python,有需要详细深入学习的朋友可以参阅:Python基础语言学习笔记总结(精华)本文通过一周快速学习python入门知识总计了学习笔记和心得,分享给大家. ##一:语法元素 ###1.注释,变量,空格的使用 注释 单行注释以#开头,多行注释以''开头和结尾 变量 变量前面不需要声明数据类型,但是必须赋值 变量命名可以使用大小写字母,数字和下划线的组合,但是首字母只能是大小写字母或者下划线,不能使用空格 中文等非字母符号也可以作为名字 空格的使用 表示缩进关系的空

  • 详解Python学习之安装pandas

    一.python pip的安装与使用 1.pip 是 Python 包管理工具,该工具提供了对Python 包的查找.下载.安装.卸载的功能. 目前如果你在 python.org 下载最新版本的安装包,则是已经自带了该工具. Python 2.7.9 + 或 Python 3.4+ 以上版本都自带 pip 工具. pip 官网:https://pypi.org/project/pip/ 你可以通过以下命令来判断是否已安装: pip --version 2.如果你还未安装,则可以使用以下方法来安装

  • Python学习笔记之自定义函数用法详解

    本文实例讲述了Python学习笔记之自定义函数用法.分享给大家供大家参考,具体如下: 函数能提高应用的模块性,和代码的重复利用率.Python提供了许多内建函数,比如print()等.也可以创建用户自定义函数. 函数定义 函数定义的简单规则: 函数代码块以def关键词开头,后接函数标识符名称和圆括号(),任何传入参数和自变量必须放在圆括号中间 函数内容以冒号起始,并且缩进 若有返回值,Return[expression] 结束函数:不带return 表达式相当于返回None 函数通常使用三个单引

  • Python学习笔记之For循环用法详解

    本文实例讲述了Python学习笔记之For循环用法.分享给大家供大家参考,具体如下: Python 中的For循环 Python 有两种类型的循环:for 循环和 while 循环.for 循环用来遍历可迭代对象. 可迭代对象是每次可以返回其中一个元素的对象, 包括字符串.列表和元组等序列类型,以及字典和文件等非序列类型.还可以使用迭代器和生成器定义可迭代对象 For 循环示例: # iterable of cities cities = ['new york city', 'mountain

  • Python学习笔记整理3之输入输出、python eval函数

    1. python中的变量: python中的变量声明不需要像C++.Java那样指定变量数据类型(int.float等),因为python会自动地根据赋给变量的值确定其类型.如 radius = 20,area = radius * radius * 3.14159 ,python会自动的将radius看成"整型",area看成"浮点型".所以编程时不用再像之前那样小心翼翼的查看数据类型有没有出错,挺人性化的. 2. input和print: 先贴个小的程序 #

  • Python学习笔记之读取文件、OS模块、异常处理、with as语法示例

    本文实例讲述了Python学习笔记之读取文件.OS模块.异常处理.with as语法.分享给大家供大家参考,具体如下: 文件读取 #读取文件 f = open("test.txt","r") print(f.read()) #打印文件内容 #关闭文件 f.close() 获取文件绝对路径:OS模块 os.environ["xxx"]  获取系统环境变量 os.getcwd 获取当前python脚本工作路径 os.getpid() 获取当前进程ID

  • Python学习笔记基本数据结构之序列类型list tuple range用法分析

    本文实例讲述了Python学习笔记基本数据结构之序列类型list tuple range用法.分享给大家供大家参考,具体如下: list 和 tuple list:列表,由 [] 标识: 有序:可改变列表元素 tuple:元组,由 () 标识: 有序:不可改变元组元素(和list的主要区别) list 和 tuple 的创建: print([]) # 空list print(["a",1,True]) # 元素类型不限 print([x for x in range(0,6)]) #

  • Python学习笔记之Django创建第一个数据库模型的方法

    Django里面集成了SQLite的数据库,对于初期研究来说,可以用这个学习. 第一步,创建数据库就涉及到建表等一系列的工作,在此之前,要先在cmd执行一个命令: python manage.py migrate 这个命令就看成一个打包安装的命令,它会根据mysite/settings.py的配置安装一系列必要的数据库表 第二步,我们要建立一个Model层,修改demo/model.py: from django.db import models classQuestion(models.Mod

随机推荐