一个月入门Python爬虫学习,轻松爬取大规模数据

Python爬虫为什么受欢迎

如果你仔细观察,就不难发现,懂爬虫、学习爬虫的人越来越多,一方面,互联网可以获取的数据越来越多,另一方面,像 Python这样的编程语言提供越来越多的优秀工具,让爬虫变得简单、容易上手。

利用爬虫我们可以获取大量的价值数据,从而获得感性认识中不能得到的信息,比如:

知乎:爬取优质答案,为你筛选出各话题下最优质的内容。

淘宝、京东:抓取商品、评论及销量数据,对各种商品及用户的消费场景进行分析。

安居客、链家:抓取房产买卖及租售信息,分析房价变化趋势、做不同区域的房价分析。

拉勾网、智联:爬取各类职位信息,分析各行业人才需求情况及薪资水平。

雪球网:抓取雪球高回报用户的行为,对股票市场进行分析和预测。

对于小白来说,爬虫可能是一件非常复杂、技术门槛很高的事情。比如有人认为学爬虫必须精通 Python,然后哼哧哼哧系统学习 Python 的每个知识点,很久之后发现仍然爬不了数据;有的人则认为先要掌握网页的知识,遂开始 HTML\CSS,结果入了前端的坑,瘁……

但掌握正确的方法,在短时间内做到能够爬取主流网站的数据,其实非常容易实现,但建议你从一开始就要有一个具体的目标。

在目标的驱动下,你的学习才会更加精准和高效。那些所有你认为必须的前置知识,都是可以在完成目标的过程中学到的。这里给你一条平滑的、零基础快速入门的学习路径。

1.学习 Python 包并实现基本的爬虫过程

2.了解非结构化数据的存储

3.学习scrapy,搭建工程化爬虫

4.学习数据库知识,应对大规模数据存储与提取

5.掌握各种技巧,应对特殊网站的反爬措施

6.分布式爬虫,实现大规模并发采集,提升效率

- ❶ -

学习 Python 包并实现基本的爬虫过程

大部分爬虫都是按“发送请求——获得页面——解析页面——抽取并储存内容”这样的流程来进行,这其实也是模拟了我们使用浏览器获取网页信息的过程。

Python中爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等,建议从requests+Xpath 开始,requests 负责连接网站,返回网页,Xpath 用于解析网页,便于抽取数据。

如果你用过 BeautifulSoup,会发现 Xpath 要省事不少,一层一层检查元素代码的工作,全都省略了。这样下来基本套路都差不多,一般的静态网站根本不在话下,豆瓣、糗事百科、腾讯新闻等基本上都可以上手了。

当然如果你需要爬取异步加载的网站,可以学习浏览器抓包分析真实请求或者学习Selenium来实现自动化,这样,知乎、时光网、猫途鹰这些动态的网站也可以迎刃而解。

- ❷ -

了解非结构化数据的存储

爬回来的数据可以直接用文档形式存在本地,也可以存入数据库中。

开始数据量不大的时候,你可以直接通过 Python 的语法或 pandas 的方法将数据存为csv这样的文件。

当然你可能发现爬回来的数据并不是干净的,可能会有缺失、错误等等,你还需要对数据进行清洗,可以学习 pandas 包的基本用法来做数据的预处理,得到更干净的数据。

- ❸ -

学习 scrapy,搭建工程化的爬虫

掌握前面的技术一般量级的数据和代码基本没有问题了,但是在遇到非常复杂的情况,可能仍然会力不从心,这个时候,强大的 scrapy 框架就非常有用了。

scrapy 是一个功能非常强大的爬虫框架,它不仅能便捷地构建request,还有强大的 selector 能够方便地解析 response,然而它最让人惊喜的还是它超高的性能,让你可以将爬虫工程化、模块化。

学会 scrapy,你可以自己去搭建一些爬虫框架,你就基本具备爬虫工程师的思维了。

- ❹ -

学习数据库基础,应对大规模数据存储

爬回来的数据量小的时候,你可以用文档的形式来存储,一旦数据量大了,这就有点行不通了。所以掌握一种数据库是必须的,学习目前比较主流的 MongoDB 就OK。

MongoDB 可以方便你去存储一些非结构化的数据,比如各种评论的文本,图片的链接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。

因为这里要用到的数据库知识其实非常简单,主要是数据如何入库、如何进行提取,在需要的时候再学习就行。

- ❺ -

掌握各种技巧,应对特殊网站的反爬措施

当然,爬虫过程中也会经历一些绝望啊,比如被网站封IP、比如各种奇怪的验证码、userAgent访问限制、各种动态加载等等。

遇到这些反爬虫的手段,当然还需要一些高级的技巧来应对,常规的比如访问频率控制、使用代理IP池、抓包、验证码的OCR处理等等。

往往网站在高效开发和反爬虫之间会偏向前者,这也为爬虫提供了空间,掌握这些应对反爬虫的技巧,绝大部分的网站已经难不到你了。

- ❻ -

分布式爬虫,实现大规模并发采集

爬取基本数据已经不是问题了,你的瓶颈会集中到爬取海量数据的效率。这个时候,相信你会很自然地接触到一个很厉害的名字:分布式爬虫。

分布式这个东西,听起来很恐怖,但其实就是利用多线程的原理让多个爬虫同时工作,需要你掌握 Scrapy + MongoDB + Redis 这三种工具。

Scrapy 前面我们说过了,用于做基本的页面爬取,MongoDB 用于存储爬取的数据,Redis 则用来存储要爬取的网页队列,也就是任务队列。

所以有些东西看起来很吓人,但其实分解开来,也不过如此。当你能够写分布式的爬虫的时候,那么你可以去尝试打造一些基本的爬虫架构了,实现一些更加自动化的数据获取。

你看,这一条学习路径下来,你已然可以成为老司机了,非常的顺畅。所以在一开始的时候,尽量不要系统地去啃一些东西,找一个实际的项目(开始可以从豆瓣、小猪这种简单的入手),直接开始就好。

因为爬虫这种技术,既不需要你系统地精通一门语言,也不需要多么高深的数据库技术,高效的姿势就是从实际的项目中去学习这些零散的知识点,你能保证每次学到的都是最需要的那部分。

总结

以上所述是小编给大家介绍的一个月入门Python学习,爬虫轻松爬取大规模数据,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!

(0)

相关推荐

  • python爬取网站数据保存使用的方法

    编码问题因为涉及到中文,所以必然地涉及到了编码的问题,这一次借这个机会算是彻底搞清楚了.问题要从文字的编码讲起.原本的英文编码只有0~255,刚好是8位1个字节.为了表示各种不同的语言,自然要进行扩充.中文的话有GB系列.可能还听说过Unicode和UTF-8,那么,它们之间是什么关系呢?Unicode是一种编码方案,又称万国码,可见其包含之广.但是具体存储到计算机上,并不用这种编码,可以说它起着一个中间人的作用.你可以再把Unicode编码(encode)为UTF-8,或者GB,再存储到计算机

  • 利用Python爬取微博数据生成词云图片实例代码

    前言 在很早之前写过一篇怎么利用微博数据制作词云图片出来,之前的写得不完整,而且只能使用自己的数据,现在重新整理了一下,任何的微博数据都可以制作出来,一年一度的虐汪节,是继续蹲在角落默默吃狗粮还是主动出击告别单身汪加入散狗粮的行列就看你啦,七夕送什么才有心意,程序猿可以试试用一种特别的方式来表达你对女神的心意.有一个创意是把她过往发的微博整理后用词云展示出来.本文教你怎么用Python快速创建出有心意词云,即使是Python小白也能分分钟做出来.下面话不多说了,来一起看看详细的介绍吧. 准备工作

  • python爬取NUS-WIDE数据库图片

    实验室需要NUS-WIDE数据库中的原图,数据集的地址为http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm   由于这个数据只给了每个图片的URL,所以需要一个小爬虫程序来爬取这些图片.在图片的下载过程中建议使用VPN.由于一些URL已经失效,所以会下载一些无效的图片. # PYTHON 2.7 Ubuntu 14.04 nuswide = "$NUS-WIDE-urls_ROOT" #the location of your nus-wi

  • python Selenium爬取内容并存储至MySQL数据库的实现代码

    前面我通过一篇文章讲述了如何爬取CSDN的博客摘要等信息.通常,在使用Selenium爬虫爬取数据后,需要存储在TXT文本中,但是这是很难进行数据处理和数据分析的.这篇文章主要讲述通过Selenium爬取我的个人博客信息,然后存储在数据库MySQL中,以便对数据进行分析,比如分析哪个时间段发表的博客多.结合WordCloud分析文章的主题.文章阅读量排名等. 这是一篇基础性的文章,希望对您有所帮助,如果文章中出现错误或不足之处,还请海涵.下一篇文章会简单讲解数据分析的过程. 一. 爬取的结果 爬

  • 通过抓取淘宝评论为例讲解Python爬取ajax动态生成的数据(经典)

    在学习python的时候,一定会遇到网站内容是通过 ajax动态请求.异步刷新生成的json数据 的情况,并且通过python使用之前爬取静态网页内容的方式是不可以实现的,所以这篇文章将要讲述如果在python中爬取ajax动态生成的数据. 至于读取静态网页内容的方式,有兴趣的可以查看本文内容. 这里我们以爬取淘宝评论为例子讲解一下如何去做到的. 这里主要分为了四步: 一 获取淘宝评论时,ajax请求链接(url) 二 获取该ajax请求返回的json数据 三 使用python解析json数据

  • python爬取安居客二手房网站数据(实例讲解)

    是小打小闹 哈哈,现在开始正式进行爬虫书写首先,需要分析一下要爬取的网站的结构:作为一名河南的学生,那就看看郑州的二手房信息吧! 在上面这个页面中,我们可以看到一条条的房源信息,从中我们发现了什么,发现了连郑州的二手房都是这么的贵,作为即将毕业的学生狗惹不起啊惹不起 还是正文吧!!!由上可以看到网页一条条的房源信息,点击进去后就会发现: 房源的详细信息.OK!那么我们要干嘛呢,就是把郑州这个地区的二手房房源信息都能拿到手,可以保存到数据库中,用来干嘛呢,作为一个地理人,还是有点用处的,这次就不说

  • 一个月入门Python爬虫学习,轻松爬取大规模数据

    Python爬虫为什么受欢迎 如果你仔细观察,就不难发现,懂爬虫.学习爬虫的人越来越多,一方面,互联网可以获取的数据越来越多,另一方面,像 Python这样的编程语言提供越来越多的优秀工具,让爬虫变得简单.容易上手. 利用爬虫我们可以获取大量的价值数据,从而获得感性认识中不能得到的信息,比如: 知乎:爬取优质答案,为你筛选出各话题下最优质的内容. 淘宝.京东:抓取商品.评论及销量数据,对各种商品及用户的消费场景进行分析. 安居客.链家:抓取房产买卖及租售信息,分析房价变化趋势.做不同区域的房价分

  • Python爬虫小例子——爬取51job发布的工作职位

    概述 不知从何时起,Python和爬虫就如初恋一般,情不知所起,一往而深,相信很多朋友学习Python,都是从爬虫开始,其实究其原因,不外两方面:其一Python对爬虫的支持度比较好,类库众多.其二Pyhton的语法简单,入门容易.所以两者形影相随,不离不弃,本文主要以一个简单的小例子,简述Python在爬虫方面的简单应用,仅供学习分享使用,如有不足之处,还请指正. 涉及知识点 本例主要爬取51job发布的工作职位,用到的知识点如下: 开发环境及工具:主要用到Python3.7 ,IDE为PyC

  • python爬虫使用正则爬取网站的实现

    本文章的所有代码和相关文章, 仅用于经验技术交流分享,禁止将相关技术应用到不正当途径,滥用技术产生的风险与本人无关. 本文章是自己学习的一些记录.欢迎各位大佬点评! 首先 今天是第一天写博客,感受到了博客的魅力,博客不仅能够记录每天的代码学习情况,并且可以当作是自己的学习笔记,以便在后面知识点不清楚的时候前来复习.这是第一次使用爬虫爬取网页,这里展示的是爬取豆瓣电影top250的整个过程,欢迎大家指点. 这里我只爬取了电影链接和电影名称,如果想要更加完整的爬取代码,请联系我.qq 1540741

  • Python爬虫简单运用爬取代理IP的实现

    功能1: 爬取西拉ip代理官网上的代理ip 环境:python3.8+pycharm 库:requests,lxml 浏览器:谷歌 IP地址:http://www.xiladaili.com/gaoni/ 分析网页源码: 选中div元素后右键找到Copy再深入子菜单找到Copy Xpath点击一下就复制到XPath 我们复制下来的Xpth内容为:/html/body/div/div[3]/div[2]/table/tbody/tr[50]/td[1] 虽然可以查出来ip,但不利于程序自动爬取所有

  • Python爬虫实战之爬取某宝男装信息

    目录 知识点介绍 实现步骤 1. 分析目标网站 2. 获取单个商品界面 3. 获取多个商品界面 4. 获取商品信息 5. 保存到MySQL数据库 完整代码 知识点介绍 本次爬取用到的知识点有: 1. selenium 2. pymysql 3  pyquery 实现步骤 1. 分析目标网站 1. 打开某宝首页, 输入"男装"后点击"搜索", 则跳转到"男装"的搜索界面. 2. 空白处"右击"再点击"检查"审

  • 通过python爬虫mechanize库爬取本机ip地址的方法

    目录 需求分析 实现分析 实际使用 完整代码演示 需求分析 最近,各平台更新的ip属地功能非常火爆,因此呢,也出现了许多新的网络用语,比如说“xx加几分”,“xx扣大分”等等,非常的有趣啊 可是呢,最近一个小伙伴和我说,“仙草哥哥,我也想查看一下自己的ip地址,可是我不会啊,我应该怎么样才能查看到自己的ip地址呢?” 关于如何查看自己的ip地址,这个我记得我在很早之前已经写过了,有兴趣的话可以查看一下我的这篇文章,当然这次呢,我会换一个复古的方式,使用mechanize进行爬取 实现分析 pyt

  • Python爬虫DOTA排行榜爬取实例(分享)

    1.分析网站 打开开发者工具,我们观察到排行榜的数据并没有在doc里 doc文档 在Javascript里我么可以看到下面代码: ajax的post方法异步请求数据 在 XHR一栏里,我们找到所请求的数据 json存储的数据 请求字段为: post请求字段 2.伪装浏览器,并将json数据存入excel里面 获取信息 将数据保存到excel中 3.结果展示 以上这篇Python爬虫DOTA排行榜爬取实例(分享)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • Python爬虫进阶之爬取某视频并下载的实现

    这几天在家闲得无聊,意外的挖掘到了一个资源网站(你懂得),但是网速慢广告多下载不了种种原因让我突然萌生了爬虫的想法. 下面说说流程: 一.网站分析 首先进入网站,F12检查,本来以为这种低端网站很好爬取,是我太低估了web主.可以看到我刷新网页之后,出现了很多js文件,并且响应获取的代码与源代码不一样,这就不难猜到这个网站是动态加载页面. 目前我知道的动态网页爬取的方法只有这两种:1.从网页响应中找到JS脚本返回的JSON数据:2.使用Selenium对网页进行模拟访问.源代码问题好解决,重要的

  • Python爬虫UA伪装爬取的实例讲解

    在使用python爬取网站信息时,查看爬取完后的数据发现,数据并没有被爬取下来,这是因为网站中有UA这种请求载体的身份标识,如果不是基于某一款浏览器爬取则是不正常的请求,所以会爬取失败.本文介绍Python爬虫采用UA伪装爬取实例. 一.python爬取失败原因如下: UA检测是门户网站的服务器会检测对应请求的载体身份标识,如果检测到请求的载体身份标识为某一款浏览器,说明该请求是一个正常的请求.如果检测到请求的载体身份标识不是基于某一款浏览器的.则表示该请求为不正常的请求,则服务器端就很有可能会

  • Python爬虫实战之爬取携程评论

    一.分析数据源 这里的数据源是指html网页?还是Aajx异步.对于爬虫初学者来说,可能不知道怎么判断,这里辰哥也手把手过一遍. 提示:以下操作均不需要登录(当然登录也可以) 咱们先在浏览器里面搜索携程,然后在携程里面任意搜索一个景点:长隆野生动物世界,这里就以长隆野生动物世界为例,讲解如何去爬取携程评论数据. 页面下方则是评论数据   从上面两张图可以看出,点击评论下一页,浏览器的链接没有变化,说明数据是Ajax异步请求.因此我们就找到了数据是异步加载过来的,这时候需要去network里面是查

随机推荐