在python里协程使用同步锁Lock的实例

尽管asyncio库是使用单线程来实现协程的,但是它还是并发的,乱序执行的。可以说是单线程的调度系统,并且由于执行时有延时或者I/O中断等因素,每个协程如果同步时,还是得使用一些同步对象来实现。

比如asyncio就定义了一个锁对象Lock,它一次只允许一个协程来访问共享的资源,如果多协程想访问就会阻塞起来,也就是说如果一个协程没有释放这个锁,别的协程是没有办法访问共享的资源。

例子:

import asyncio
import functools

def unlock(lock):
  print('callback releasing lock')
  lock.release()

async def coro1(lock):
  print('coro1 waiting for the lock')
  with await lock:
    print('coro1 acquired lock')
  print('coro1 released lock')

async def coro2(lock):
  print('coro2 waiting for the lock')
  await lock
  try:
    print('coro2 acquired lock')
  finally:
    print('coro2 released lock')
    lock.release()

async def main(loop):
  # Create and acquire a shared lock.
  lock = asyncio.Lock()
  print('acquiring the lock before starting coroutines')
  await lock.acquire()
  print('lock acquired: {}'.format(lock.locked()))

  # Schedule a callback to unlock the lock.
  loop.call_later(0.1, functools.partial(unlock, lock))

  # Run the coroutines that want to use the lock.
  print('waiting for coroutines')
  await asyncio.wait([coro1(lock), coro2(lock)]),

event_loop = asyncio.get_event_loop()
try:
  event_loop.run_until_complete(main(event_loop))
finally:
  event_loop.close()

输出结果如下:

acquiring the lock before starting coroutines
lock acquired: True
waiting for coroutines
coro1 waiting for the lock
coro2 waiting for the lock
callback releasing lock
coro1 acquired lock
coro1 released lock
coro2 acquired lock
coro2 released lock

以上这篇在python里协程使用同步锁Lock的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python中的协程深入理解

    先介绍下什么是协程: 协程,又称微线程,纤程,英文名Coroutine.协程的作用,是在执行函数A时,可以随时中断,去执行函数B,然后中断继续执行函数A(可以自由切换).但这一过程并不是函数调用(没有调用语句),这一整个过程看似像多线程,然而协程只有一个线程执行. 是不是有点没看懂,没事,我们下面会解释.要理解协程是什么,首先需要理解yield,这里简单介绍下,yield可以理解为生成器,yield item这行代码会产出一个值,提供给next(...)的调用方; 此外,还会作出让步,暂停执行生

  • python协程之动态添加任务的方法

    python协程只能运行在事件循环中,但是一旦事件循环运行,又会阻塞当前任务.所以只能在当前进程中再开一个线程,这个线程的主要任务是运行事件循环,就是event_loop,因为他是一个无限循环,会阻塞当前线程. 放一个自己写的demo,注释写的很详细. 另外还有一点需要注意,一个事件循环中不能运行另外一个事件循环. 运行结果: import asyncio from threading import Thread async def production_task(): i = 0 while

  • 简单了解python协程的相关知识

    什么是协程 协程是python种一种实现多任务的方式,他是一种比线程更加小的单元,占用更小的执行单元(资源),为啥说他是一个执行单元,因为他自带CPU上下文,这样在合适gr的时机,可以把一个协程切换到另一个协程,只要在这个过程中保存和恢复cpu上下文那么程序还是可以运行的 通俗的理解: 一个线程中的某个函数,可以在任何地方保存当前函数的一些临时变量,然后切换到另一个函数中运行,并且切换的次数以及社么时候再切换回来是可控的 协程和线程的差异 在实现多任务时,线程会自己欢子一些数据,操作系统切换时需

  • 深入浅析python中的多进程、多线程、协程

    进程与线程的历史 我们都知道计算机是由硬件和软件组成的.硬件中的CPU是计算机的核心,它承担计算机的所有任务. 操作系统是运行在硬件之上的软件,是计算机的管理者,它负责资源的管理和分配.任务的调度. 程序是运行在系统上的具有某种功能的软件,比如说浏览器,音乐播放器等. 每次执行程序的时候,都会完成一定的功能,比如说浏览器帮我们打开网页,为了保证其独立性,就需要一个专门的管理和控制执行程序的数据结构--进程控制块. 进程就是一个程序在一个数据集上的一次动态执行过程. 进程一般由程序.数据集.进程控

  • 对Python协程之异步同步的区别详解

    一下代码通过协程.多线程.多进程的方式,运行代码展示异步与同步的区别. import gevent import threading import multiprocessing # 这里展示同步和异步的性能区别,可以看到异步直接同时执行并完成, # 而同步,需要等待第一个完成后再次执行下一个,是有顺序的执行,而异步不需要 import time def task(pid): gevent.sleep(0.5) print('Task %s done' % pid) def task2(pid)

  • python中协程实现TCP连接的实例分析

    在网络通信中,每个连接都必须创建新线程(或进程) 来处理,否则,单线程在处理连接的过程中, 无法接受其他客户端的连接.所以我们尝试使用协程来实现服务器对多个客户端的响应. 与单一TCP通信的构架一样,只是使用协程来实现多个任务同时进行. #服务端 import socket from gevent import monkey import gevent monkey.patch_all() def handle_conn(seObj): while True: re_Data = seObj.r

  • python编程使用协程并发的优缺点

    协程 协程是一种用户态的轻量级线程,又称微线程. 协程拥有自己的寄存器上下文和栈,调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈.因此:协程能保留上一次调用时的状态(即所有局部状态的一个特定组合),每次过程重入时,就相当于进入上一次调用的状态,换种说法:进入上一次离开时所处逻辑流的位置. 优点: 1.无需线程上下文切换的开销 2.无需原子操作锁定及同步的开销 3.方便切换控制流,简化编程模型 4.高并发+高扩展性+低成本:一个CPU支持上万的协程都不

  • 在python里协程使用同步锁Lock的实例

    尽管asyncio库是使用单线程来实现协程的,但是它还是并发的,乱序执行的.可以说是单线程的调度系统,并且由于执行时有延时或者I/O中断等因素,每个协程如果同步时,还是得使用一些同步对象来实现. 比如asyncio就定义了一个锁对象Lock,它一次只允许一个协程来访问共享的资源,如果多协程想访问就会阻塞起来,也就是说如果一个协程没有释放这个锁,别的协程是没有办法访问共享的资源. 例子: import asyncio import functools def unlock(lock): print

  • Python中协程用法代码详解

    本文研究的主要是python中协程的相关问题,具体介绍如下. Num01–>协程的定义 协程,又称微线程,纤程.英文名Coroutine. 首先我们得知道协程是啥?协程其实可以认为是比线程更小的执行单元. 为啥说他是一个执行单元,因为他自带CPU上下文.这样只要在合适的时机, 我们可以把一个协程 切换到另一个协程. 只要这个过程中保存或恢复 CPU上下文那么程序还是可以运行的. Num02–>协程和线程的差异 那么这个过程看起来和线程差不多.其实不然, 线程切换从系统层面远不止保存和恢复 CP

  • 简单了解python gevent 协程使用及作用

    简介 没有切换开销.因为子程序切换不是线程切换,而是由程序自身控制,没有线程切换的开销,因此执行效率高, 不需要锁机制.因为只有一个线程,也不存在同时写变量冲突,在协程中控制共享资源不加锁,只需要判断状态就好了,所以执行效率比多线程高很多 Python对协程的支持还非常有限,用在generator中的yield可以一定程度上实现协程. yield 传统的生产者-消费者模型是一个线程写消息,一个线程取消息,通过锁机制控制队列和等待,但一不小心就可能死锁. 如果改用协程,生产者生产消息后,直接通过y

  • Python 异步协程函数原理及实例详解

    这篇文章主要介绍了Python 异步协程函数原理及实例详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一. asyncio 1.python3.4开始引入标准库之中,内置对异步io的支持 2.asyncio本身是一个消息循环 3.步骤: (1)创建消息循环 (2)把协程导入 (3)关闭 4.举例: import threading # 引入异步io包 import asyncio # 使用协程 @ asyncio.coroutine def

  • python使用协程实现并发操作的方法详解

    本文实例讲述了python使用协程实现并发操作的方法.分享给大家供大家参考,具体如下: 协程 协程是一种用户态的轻量级线程,又称微线程. 协程拥有自己的寄存器上下文和栈,调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈.因此:协程能保留上一次调用时的状态(即所有局部状态的一个特定组合),每次过程重入时,就相当于进入上一次调用的状态,换种说法:进入上一次离开时所处逻辑流的位置. 优点: 无需线程上下文切换的开销 无需原子操作锁定及同步的开销 方便切换控制

  • python已协程方式处理任务实现过程

    这篇文章主要介绍了python已协程方式处理任务实现过程,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 #从genent中导入monky模块① from gevent import monkey #把程序变成协程的方式运行② monkey.patch_all() import gevent,requests,time #导入requests和time start = time.time() #记录程序开始时间 url_list = ['http

  • python asyncio 协程库的使用

    asyncio 是 python 力推多年的携程库,与其 线程库 相得益彰,更轻量,并且协程可以访问同一进程中的变量,不需要进程间通信来传递数据,所以使用起来非常顺手. asyncio 官方文档写的非常简练和有效,半小时内可以学习和测试完,下面为我的一段 HelloWrold,感觉可以更快速的帮你认识 协程 . 定义协程 import asyncio import time async def say_after(delay, what): await asyncio.sleep(delay)

  • python 生成器协程运算实例

    一.yield运行方式 我们定义一个如下的生成器: def put_on(name): print("Hi {}, 货物来了,准备搬到仓库!".format(name)) while True: goods = yield print("货物[%s]已经被%s搬进仓库了."%(goods,name)) p = put_on("bigberg") #输出 G:\python\install\python.exe G:/python/untitled

  • python在协程中增加任务实例操作

    1.添加一个任务 task2 = visit_url('http://another.com', 3) asynicio.run(task2) 2.这 2 个程序一共消耗 5s 左右的时间.并没有发挥并发编程的优势 import asyncio import time async def visit_url(url, response_time): """访问 url""" await asyncio.sleep(response_time) r

随机推荐