python实现维吉尼亚算法

本文实例为大家分享了python实现维吉尼亚算法的具体代码,供大家参考,具体内容如下

1 Virginia加密算法、解密算法

Vigenenre密码是最著名的多表代换密码,是法国著名密码学家Vigenenre发明的。Vigenenre密码使用一个词组作为密钥,密钥中每一个字母用来确定一个代换表,每一个密钥字母被用来加密一个明文字母,第一个密钥字母加密第一个明文字母,第二个密钥字母加密第二个明文字母,等所有密钥字母使用完后,密钥再次循环使用,于是加解密前需先将明密文按照密钥长度进行分组。

密码算法可表示如下:。

设明文串为:

M=m1m2…mn,mi∈charset, n是明文长度

秘钥为:

K=k1k2…kd,ki∈charset, d是秘钥长度

密文为:

C=c1c2…cn,ci∈charset, n是密文长度

加密算法:

cj+td=(mj+td+kj ) mod 26

j=1…d,  t=0…ceiling(n/d)-1

其中ceiling(x)函数表示不小于x最小整数

解密算法:

mj+td=(cj+td -kj ) mod 26

j=1…d, t=0…ceiling(n/d)-1

其中ceiling(x)函数表示不小于x最小整数

加解密代码如下

def VigenereEncrypto(message, key):
 msLen = len(message)
 keyLen = len(key)
 message = message.upper()
 key = key.upper()
 raw = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"# 明文空间
 # 定义加密后的字符串
 ciphertext = ""
 # 开始加密
 for i in range(0, msLen):
  # 轮询key的字符
  j = i % keyLen
  # 判断字符是否为英文字符,不是则直接向后面追加且继续
  if message[i] not in raw:
   ciphertext += message[i]
   continue
  encodechr = chr((ord(message[i]) - ord("A") + ord(key[j]) - ord("A")) % 26 + ord("A"))
  # 追加字符
  ciphertext += encodechr
 # 返回加密后的字符串
 return ciphertext
if __name__ == "__main__":
 message = "Hello, World!"
 key = "key"
 text = VigenereEncrypto(message, key)
 print(text)
def VigenereDecrypto(ciphertext, key):
 msLen = len(ciphertext)
 keyLen = len(key)
 key = key.upper()
 raw = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"# 密文空间
 plaintext = ""
 for i in range(0, msLen):# 开始解密
  # 轮询key的字符
  j = i % keyLen
  # 判断字符是否为英文字符,不是则直接向后面追加且继续
  if ciphertext[i] not in raw:
   plaintext += ciphertext[i]
   continue
  decodechr = chr((ord(ciphertext[i]) - ord("A") - ord(key[j]) - ord("A")) % 26 + ord("A"))
  # 追加字符
  plaintext += decodechr
 # 返回加密后的字符串
 return plaintext
if __name__=="__main__":
 ciphertext = "RIJVS, AMBPB!"
 key = "key"
 text = VigenereDecrypto(ciphertext, key)
 print(text)
import VigenereDecrypto
import VigenereEncrypto
def main():
 info = '''==========********=========='''# 开始加密
 print(info, "\n------维吉尼亚加密算法------")
 print(info)
 # 读取测试文本文档
 message = open("test.txt","r+").read()
 print("读取测试文本文档:test.txt")
 print("开始加密!")
 # 输入key
 key = input("请输入密钥:")
 # 进入加密算法
 CipherText = VigenereEncrypto.VigenereEncrypto(message, key)
 # 写入密文文本文档
 C = open("CipherText.txt", "w+")
 C.write(CipherText)
 C.close()
 print("加密后得到的密文是: \n" + CipherText)
 # 开始解密
 print(info, "\n------维吉尼亚解密算法------")
 print(info)
 # 读取加密文本文档
 print("读取密文文本文档:CipherText.txt")
 Ciphertext = open("CipherText.txt", "r+").read()
 # 进入解密算法
 print("开始解密!")
 Plaintext = VigenereDecrypto.VigenereDecrypto(Ciphertext, key)
 P = open("PlainText.txt", "w+")
 # 写入解密文本文档
 P.write(Plaintext)
 P.close()
 print("解密后得到的明文是 : \n" + Plaintext)
if __name__=="__main__":
 main()

2重合指数法

2.1重合指数

设x=X1X2...Xn是一个含有n个字符的字符串,x的重合指数记为Ic(x),定义为x中两个随机元素相同的概率。

设y是一个长度为n密文,即y=y1y2...ym,其中y是密文字母,同样来求从中抽到两个相同字母的概率是多少。为此,设NA为字母A在这份密文中的频数,设Nb为字母B在这份密文中的频数,依此类推

从n个密文字母中抽取两个字母的方式有𝐶_𝑛^2=n(n-1)/2,而其中NA个A组成一对A的方式有CNA2= NA(NA-1)/2,于是从y中抽到两个字母都为A的概率为[NA(NA -1)]/[n(n-1)],..因此,从y中抽到两个相同字母的概率为  (∑▒〖𝑁𝑖(𝑁𝑖−1)〗)/(𝑛(𝑛−1))

这个数据称为这份密文的重合指数,记为IC(Y)

2.2重合指数法原理

26个英文字母出现频率表                                                                 重合指数公式

(1)根据频率表,我们可以计算出英语文本的重合指数为0.065。

(2)利用重合指数推测密钥长度的原理在于,对于一个由凯撒密码加密的序列,由于所有字母的位移程度相同,所以密文的重合指数应等于原文语言的重合指数。

(3)假设y=y1 y2...yn是由  Vigenere 密码得到的长度为n的密文。将y按列排成一个m*(n/ m)的矩形阵列,各行分别记为y1,y2...ym.如果m确实是密钥字的长度,则yi中的各个密文字母都是由同一个密钥的移位加密方式得到的。矩阵的每一行对应于子串yi,1≤i≤m。

(4)另一方面,如果m不是密钥字的长度,则 yi中的各个密文字母将是由不同密钥以移位加密方式得到的, yi 中的各个密文字母看起来更随机一些。对于一个随机的英文字母串,其重合指数为0.038。

(5)因为0.065和0.038相差较远,所以我们一般能够确定密钥字的长度,或者说我们能够确定由 Kasiski 测试法得到的密钥字的长度的正确性。

3拟重合指数测试法

拟重合指数测试法:首先子密文段重各个字母的频率进行统计(记为fi, i∈a – z),查看字母频率分布统计概率(记pi),计算子密文段长度为n,使用公式:

计算出M0,然后对子密文段移位25次,同样按照上述方法求出M1 — M25的值

根据重合指数的定义知:一个有意义的英文文本,M ≈0.065,所以利用这个规律,就可以确定秘钥中的每一个字母

代码实现

def main():
 fo=open("cipher.txt","r")
 s=fo.read()
 s=str(s)
 fo.close()
 ic=0
 max_num=len(s)//26
 # while ic<0.06:
 #def fenzu():
 #分组
 aves=[0]*max_num
 for i in range(1,max_num):
  count = 0
  zicuan=[]
  for t in range (i):
   fz=s[t:len(s):i]
   zicuan+=[fz]
   count+=1
   #print(count,'韩庚韩庚韩庚',zicuan)
  for js in range (i):
   zicuan[js]=zicuan[js].upper()
  ics=[0]*count
  #统计每个分组的IC值
  for r in range(count):
   ics[r]=tongjicisu(zicuan[r])
  ave =sum(ics)/count
  print('第{}次分片的IC值是{}'.format(i,ave))
  aves[i-1]=ave
 #找到最可能的密钥分组
 key_index=1
 max = 1
 for i in range(max_num):
  max1=abs(aves[i]-0.065)
  if max1<max:
   max=max1
   key_index=i+1
 print('key_length',key_index)
 key = [None]*key_index
 #得到密钥长度后从新按密钥长度分片计算
 zicuan2 = []
 for t in range(key_index):
  fz = s[t:len(s):key_index]
  zicuan2 += [fz]
 for i in range(key_index):
  key[i]=decode(zicuan2[i])
 print(key)
 di = {}.fromkeys(key)
 key=di.keys()
 keys=""
 for i in key:
  keys+=i

 print(keys,"密钥")
 mc = VigenereDecrypto(s,keys)
 print(mc,'ecewew')

# 统计次数IC值
def tongjicisu(s):
 tongjicisu = [0] * 26
 zff = ""
 ic=-0
 for t in s:
  if 65 <= ord(t) <= 90:
   zff += t
 for cisu in zff:
  tongjicisu[ord(cisu) - 65] += 1
 for i in range (len(tongjicisu)):
  xic=tongjicisu[i]*(tongjicisu[i]-1)/len(zff)/(len(zff)-1)
  ic+=xic
 return ic

def decode(s):
 nicos=[0]*26
 for i in range(26):
  nicos[i]=tongjinichonghe(i,s)
 list1=sorted(nicos)
 num = nicos.index(list1[-1])
 ch = chr(num+65)
 #print(ch)
 return ch
#计算拟重合指数
def tongjinichonghe(key,s):
 sniic=0
 p = [0.08167, 0.01492, 0.02782, 0.04253, 0.12702, 0.02228, 0.02015, 0.06094, 0.06966, 0.00153, 0.00772, 0.04025,
   0.02406, 0.06749, 0.07507, 0.01929, 0.00095, 0.05987, 0.06327, 0.09056, 0.02758, 0.00978, 0.02360, 0.00150,
   0.01974, 0.00074]
 tongjinichonghe = [0] * 26
 zff = ""
 #ic=-0
 #转换为只有大写字母的字符串
 for t in s:
  if 65 <= ord(t) <= 90:
   zff += t
 #统计每个字母出现的次数
 for cisu in zff:
  tongjinichonghe[ord(cisu) - 65] += 1
 #求出每个凯撒加密的解密,根据拟重合指数找到正确的密钥
 list0=tongjinichonghe
 list1=[0]*26
 for i in range (26):
  list1[i]=list0[(i+key)%26]
 tongjinichonghe=list1
 for i in range (len(tongjinichonghe)):
  niic=tongjinichonghe[i]/len(tongjinichonghe)*p[i]
  sniic+=niic
 return sniic

def VigenereDecrypto(ciphertext, key):
 msLen = len(ciphertext)
 keyLen = len(key)
 key = key.upper()
 raw = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"# 密文空间
 plaintext = ""
 for i in range(0, msLen):# 开始解密
  # 轮询key的字符
  j = i % keyLen
  # 判断字符是否为英文字符,不是则直接向后面追加且继续
  if ciphertext[i] not in raw:
   plaintext += ciphertext[i]
   continue
  decodechr = chr((ord(ciphertext[i]) - ord("A") - ord(key[j]) - ord("A")) % 26 + ord("A"))
  # 追加字符
  plaintext += decodechr
 # 返回加密后的字符串
 return plaintext

if __name__ == '__main__':
 main()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python实现维吉尼亚加密法

    本文实例为大家分享了python实现维吉尼亚加密法的具体代码,供大家参考,具体内容如下 Vigenere加密/解密时,把英文字母映射为0-25的数字再进行运算,并按n个字母为一组进行变换.算法定义如下: 设密钥 k =(k1,k2,k3-,kn),明文 m = (m1,m2,-.mn),则加密算法为: Ek(m) = (c1,c2,-cn) 其中:c1 = (mi+ki)(mod 26),i=1,2,3-..n 解密算法为: mi = (ci - ki)(mod 26), i = 1,2,-..

  • python实现Virginia无密钥解密

    本文实例为大家分享了Virginia无密钥解密的具体代码,供大家参考,具体内容如下 加密 virginia加密是一种多表替换加密方法,通过这种方法,可以有效的解决单表替换中无法应对的字母频度攻击.这种加密方法最重要的就是选取合适的密钥,一旦密钥被公开,保密性也就无从谈起.结合virginia加密原理,给出使用python实现的代码 plainText = "whenigotthethemeithoughtofgooglesartificialintelligencealphagothisprog

  • python实现维吉尼亚算法

    本文实例为大家分享了python实现维吉尼亚算法的具体代码,供大家参考,具体内容如下 1 Virginia加密算法.解密算法 Vigenenre密码是最著名的多表代换密码,是法国著名密码学家Vigenenre发明的.Vigenenre密码使用一个词组作为密钥,密钥中每一个字母用来确定一个代换表,每一个密钥字母被用来加密一个明文字母,第一个密钥字母加密第一个明文字母,第二个密钥字母加密第二个明文字母,等所有密钥字母使用完后,密钥再次循环使用,于是加解密前需先将明密文按照密钥长度进行分组. 密码算法

  • JS维吉尼亚密码算法实现代码

    复制代码 代码如下: var Vigenere = { _strCpr: 'abcdefghijklmnopqrstuvwxyz_12345 67890.ABCDEFGHIJKLMNOPQRSTUVWXYZ',//可以将此字符串的顺序打乱点,或者添加更多字符 _strKey: function(strK,str){//生成密钥字符串,strK为密钥,str为明文或者密文 var lenStrK = strK.length; var lenStr = str.length; if(lenStrK

  • JavaScript实现维吉尼亚(Vigenere)密码算法实例

    传统加密技术对于当今的网络安全发挥不了大作用,但每一本讲述密码学的书的开头都会率先介绍它们,因为它们是密码学的基础,是密码学的历史.几乎每一本密码学的书在讲述Vigenere密码的章节都会有这么一个<Vigenere代换表>用户讲解Vigenere密码机制: 加密过程很简单,就是给定密钥字母x和明文字母y,密文字母是位于x行和y列的那个字母.这样就决定了加密一条消息需要与消息一样长的密钥字符串,通常,密钥字符串是密钥词的重复.以<密码编码学与网络安全--原理与实践>中的例子来作为本

  • Python实现的维尼吉亚密码算法示例

    本文实例讲述了Python实现的维尼吉亚密码算法.分享给大家供大家参考,具体如下: 一 代码 # -*- coding:utf-8 -*- #key='relations' #plaintext='tomorrowiwillhaveagood' print("我们测试结果:") key='helloworld' plaintext=raw_input('请输入明文:') ascii='abcdefghijklmnopqrstuvwxyz' keylen=len(key) ptlen=l

  • Python实现螺旋矩阵的填充算法示例

    本文实例讲述了Python实现螺旋矩阵的填充算法.分享给大家供大家参考,具体如下: afanty的分析: 关于矩阵(二维数组)填充问题自己动手推推,分析下两个下表的移动规律就很容易咯. 对于螺旋矩阵,不管它是什么鬼,反正就是依次向右.向下.向右.向上移动. 向右移动:横坐标不变,纵坐标加1 向下移动:纵坐标不变,横坐标加1 向右移动:横坐标不变,纵坐标减1 向上移动:纵坐标不变,横坐标减1 代码实现: #coding=utf-8 import numpy ''''' Author: afanty

  • Python运维自动化之nginx配置文件对比操作示例

    本文实例讲述了Python运维自动化之nginx配置文件对比操作.分享给大家供大家参考,具体如下: 文件差异对比diff.py #!/usr/bin/env python # import difflib import sys try: textfile1=sys.argv[1] textfile2=sys.argv[2] except exception,e: print "Error:"+str(2) print "Usge: difflib.py file1 file2

  • Python机器学习之手写KNN算法预测城市空气质量

    目录 一.KNN算法简介 二.KNN算法实现思路 三.KNN算法预测城市空气质量 1. 获取数据 2. 生成测试集和训练集 3. 实现KNN算法 一.KNN算法简介 KNN(K-Nearest Neighbor)最邻近分类算法是数据挖掘分类(classification)技术中常用算法之一,其指导思想是"近朱者赤,近墨者黑",即由你的邻居来推断出你的类别. KNN最邻近分类算法的实现原理:为了判断未知样本的类别,以所有已知类别的样本作为参照,计算未知样本与所有已知样本的距离,从中选取与

  • Python深度强化学习之DQN算法原理详解

    目录 1 DQN算法简介 2 DQN算法原理 2.1 经验回放 2.2 目标网络 3 DQN算法伪代码 DQN算法是DeepMind团队提出的一种深度强化学习算法,在许多电动游戏中达到人类玩家甚至超越人类玩家的水准,本文就带领大家了解一下这个算法,论文的链接见下方. 论文:Human-level control through deep reinforcement learning | Nature 代码:后续会将代码上传到Github上... 1 DQN算法简介 Q-learning算法采用一

  • Python基于纹理背景和聚类算法实现图像分割详解

    目录 一.基于纹理背景的图像分割 二.基于K-Means聚类算法的区域分割 三.总结 一.基于纹理背景的图像分割 该部分主要讲解基于图像纹理信息(颜色).边界信息(反差)和背景信息的图像分割算法.在OpenCV中,GrabCut算法能够有效地利用纹理信息和边界信息分割背景,提取图像目标物体.该算法是微软研究院基于图像分割和抠图的课题,它能有效地将目标图像分割提取,如图1所示[1]. GrabCut算法原型如下所示: mask, bgdModel, fgdModel = grabCut(img,

随机推荐