算法系列15天速成 第十四天 图【上】

今天来分享一下图,这是一种比较复杂的非线性数据结构,之所以复杂是因为他们的数据元素之间的关系是任意的,而不像树那样 被几个性质定理框住了,元素之间的关系还是比较明显的,图的使用范围很广的,比如网络爬虫,求最短路径等等,不过大家也不要胆怯,

越是复杂的东西越能体现我们码农的核心竞争力。

既然要学习图,得要遵守一下图的游戏规则。

一: 概念

图是由“顶点”的集合和“边”的集合组成。记作:G=(V,E);

<1> 无向图

就是“图”中的边没有方向,那么(V1,V2)这条边自然跟(V2,V1)是等价的,无向图的表示一般用”圆括号“。

<2> 有向图

“图“中的边有方向,自然<V1,V2>这条边跟<V2,V1>不是等价的,有向图的表示一般用"尖括号"表示。

<3> 邻接点

一条边上的两个顶点叫做邻接点,比如(V1,V2),(V1,V3),(V1,V5),只是在有向图中有一个“入边,出边“的

概念,比如V3的入边为V5,V3的出边为V2,V1,V4。

<4> 顶点的度

这个跟“树”中的度的意思一样。不过有向图中也分为“入度”和“出度”两种,这个相信大家懂的。

<5> 完全图

每两个顶点都存在一条边,这是一种完美的表现,自然可以求出边的数量。

无向图:edges=n(n-1)/2;

有向图:edges=n(n-1);           //因为有向图是有边的,所以必须在原来的基础上"X2"。

<6> 子图

如果G1的所有顶点和边都在G2中,则G1是G2的子图,具体不说了。

<7> 路径,路径长度和回路(这些概念还是比较重要的)

路径:        如果Vm到Vn之间存在一个顶点序列。则表示Vm到Vn是一条路径。

路径长度:  一条路径中“边的数量”。

简单路径:  若一条路径上顶点不重复出现,则是简单路径。

回路:       若路径的第一个顶点和最后一个顶点相同,则是回路。

简单回路:  第一个顶点和最后一个顶点相同,其它各顶点都不重复的回路则是简单回路。

<8> 连通图和连通分量(针对无向图而言的)

连通图:     无向图中,任意两个顶点都是连通的则是连通图,比如V1,V2,V4之间。

连通分量:  无向图的极大连通子图就是连通分量,一般”连通分量“就是”图“本身,除非是“非连通图”,

如下图就是两个连通分量。

<9> 强连通图和强连通分量(针对有向图而言)

这里主要注意的是“方向性“,V4可以到V3,但是V3无法到V4,所以不能称为强连通图。

<10> 网

边上带有”权值“的图被称为网。很有意思啊,呵呵。

二:存储

图的存储常用的是”邻接矩阵”和“邻接表”。

邻接矩阵: 手法是采用两个数组,一个一维数组用来保存顶点信息,一个二维数组来用保存边的信息,

缺点就是比较耗费空间。

邻接表:   改进后的“邻接矩阵”,缺点是不方便判断两个顶点之间是否有边,但是相比节省空间。

三: 创建图

这里我们就用邻接矩阵来保存图,一般的操作也就是:①创建,②遍历

代码如下:

#region 邻接矩阵的结构图
    /// <summary>
/// 邻接矩阵的结构图
/// </summary>
    public class MatrixGraph
    {
        //保存顶点信息
        public string[] vertex;

//保存边信息
        public int[,] edges;

//深搜和广搜的遍历标志
        public bool[] isTrav;

//顶点数量
        public int vertexNum;

//边数量
        public int edgeNum;

//图类型
        public int graphType;

/// <summary>
/// 存储容量的初始化
/// </summary>
/// <param name="vertexNum"></param>
/// <param name="edgeNum"></param>
/// <param name="graphType"></param>
        public MatrixGraph(int vertexNum, int edgeNum, int graphType)
        {
            this.vertexNum = vertexNum;
            this.edgeNum = edgeNum;
            this.graphType = graphType;

vertex = new string[vertexNum];
            edges = new int[vertexNum, vertexNum];
            isTrav = new bool[vertexNum];
        }

}
    #endregion

<1> 创建图很简单,让用户输入一些“边,点,权值"来构建一下图

代码如下:

#region 图的创建
        /// <summary>
/// 图的创建
/// </summary>
/// <param name="g"></param>
        public MatrixGraph CreateMatrixGraph()
        {
            Console.WriteLine("请输入创建图的顶点个数,边个数,是否为无向图(0,1来表示),已逗号隔开。");

var initData = Console.ReadLine().Split(',').Select(i => int.Parse(i)).ToList();

MatrixGraph graph = new MatrixGraph(initData[0], initData[1], initData[2]);

Console.WriteLine("请输入各顶点信息:");

for (int i = 0; i < graph.vertexNum; i++)
            {
                Console.Write("\n第" + (i + 1) + "个顶点为:");

var single = Console.ReadLine();

//顶点信息加入集合中
                graph.vertex[i] = single;
            }

Console.WriteLine("\n请输入构成两个顶点的边和权值,以逗号隔开。\n");

for (int i = 0; i < graph.edgeNum; i++)
            {
                Console.Write("第" + (i + 1) + "条边:\t");

initData = Console.ReadLine().Split(',').Select(j => int.Parse(j)).ToList();

int start = initData[0];
                int end = initData[1];
                int weight = initData[2];

//给矩阵指定坐标位置赋值
                graph.edges[start - 1, end - 1] = weight;

//如果是无向图,则数据呈“二,四”象限对称
                if (graph.graphType == 1)
                {
                    graph.edges[end - 1, start - 1] = weight;
                }
            }

return graph;
        }
        #endregion

<2>广度优先

针对下面的“图型结构”,我们如何广度优先呢?其实我们只要深刻理解"广搜“给我们定义的条条框框就行了。 为了避免同一个顶点在遍历时被多

次访问,可以将”顶点的下标”存放在sTrav[]的bool数组,用来标识是否已经访问过该节点。

第一步:首先我们从isTrav数组中选出一个未被访问的节点,如V1。

第二步:访问V1的邻接点V2,V3,V5,并将这三个节点标记为true。

第三步:第二步结束后,我们开始访问V2的邻接点V1,V3,但是他们都是被访问过的。

第四步:我们从第二步结束的V3出发访问他的邻接点V2,V1,V5,V4,还好V4是未被访问的,此时标记一下。

第五步:我们访问V5的邻接点V1,V3,V4,不过都是已经访问过的。

第六步:有的图中通过一个顶点的“广度优先”不能遍历所有的顶点,此时我们重复(1-5)的步骤就可以最终完成广度优先遍历。

代码如下:

#region 广度优先
        /// <summary>
/// 广度优先
/// </summary>
/// <param name="graph"></param>
        public void BFSTraverse(MatrixGraph graph)
        {
            //访问标记默认初始化
            for (int i = 0; i < graph.vertexNum; i++)
            {
                graph.isTrav[i] = false;
            }

//遍历每个顶点
            for (int i = 0; i < graph.vertexNum; i++)
            {
                //广度遍历未访问过的顶点
                if (!graph.isTrav[i])
                {
                    BFSM(ref graph, i);
                }
            }
        }

/// <summary>
/// 广度遍历具体算法
/// </summary>
/// <param name="graph"></param>
        public void BFSM(ref MatrixGraph graph, int vertex)
        {
            //这里就用系统的队列
            Queue<int> queue = new Queue<int>();

//先把顶点入队
            queue.Enqueue(vertex);

//标记此顶点已经被访问
            graph.isTrav[vertex] = true;

//输出顶点
            Console.Write(" ->" + graph.vertex[vertex]);

//广度遍历顶点的邻接点
            while (queue.Count != 0)
            {
                var temp = queue.Dequeue();

//遍历矩阵的横坐标
                for (int i = 0; i < graph.vertexNum; i++)
                {
                    if (!graph.isTrav[i] && graph.edges[temp, i] != 0)
                    {
                        graph.isTrav[i] = true;

queue.Enqueue(i);

//输出未被访问的顶点
                        Console.Write(" ->" + graph.vertex[i]);
                    }
                }
            }
        }
        #endregion

<3> 深度优先

同样是这个图,大家看看如何实现深度优先,深度优先就像铁骨铮铮的好汉,遵循“能进则进,不进则退”的原则。

第一步:同样也是从isTrav数组中选出一个未被访问的节点,如V1。

第二步:然后一直访问V1的邻接点,一直到走头无路的时候“回溯”,路线为V1,V2,V3,V4,V5,到V5的时候访问邻接点V1,发现V1是访问过的,

此时一直回溯的访问直到V1。

第三步: 同样有的图中通过一个顶点的“深度优先”不能遍历所有的顶点,此时我们重复(1-2)的步骤就可以最终完成深度优先遍历。

代码如下:

#region 深度优先
        /// <summary>
/// 深度优先
/// </summary>
/// <param name="graph"></param>
        public void DFSTraverse(MatrixGraph graph)
        {
            //访问标记默认初始化
            for (int i = 0; i < graph.vertexNum; i++)
            {
                graph.isTrav[i] = false;
            }

//遍历每个顶点
            for (int i = 0; i < graph.vertexNum; i++)
            {
                //广度遍历未访问过的顶点
                if (!graph.isTrav[i])
                {
                    DFSM(ref graph, i);
                }
            }
        }

#region 深度递归的具体算法
        /// <summary>
/// 深度递归的具体算法
/// </summary>
/// <param name="graph"></param>
/// <param name="vertex"></param>
        public void DFSM(ref MatrixGraph graph, int vertex)
        {
            Console.Write("->" + graph.vertex[vertex]);

//标记为已访问
            graph.isTrav[vertex] = true;

//要遍历的六个点
            for (int i = 0; i < graph.vertexNum; i++)
            {
                if (graph.isTrav[i] == false && graph.edges[vertex, i] != 0)
                {
                    //深度递归
                    DFSM(ref graph, i);
                }
            }
        }
        #endregion
        #endregion

最后上一下总的代码

代码如下:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace MatrixGraph
{
    public class Program
    {
        static void Main(string[] args)
        {
            MatrixGraphManager manager = new MatrixGraphManager();

//创建图
            MatrixGraph graph = manager.CreateMatrixGraph();

manager.OutMatrix(graph);

Console.Write("广度递归:\t");

manager.BFSTraverse(graph);

Console.Write("\n深度递归:\t");

manager.DFSTraverse(graph);

Console.ReadLine();

}
    }

#region 邻接矩阵的结构图
    /// <summary>
/// 邻接矩阵的结构图
/// </summary>
    public class MatrixGraph
    {
        //保存顶点信息
        public string[] vertex;

//保存边信息
        public int[,] edges;

//深搜和广搜的遍历标志
        public bool[] isTrav;

//顶点数量
        public int vertexNum;

//边数量
        public int edgeNum;

//图类型
        public int graphType;

/// <summary>
/// 存储容量的初始化
/// </summary>
/// <param name="vertexNum"></param>
/// <param name="edgeNum"></param>
/// <param name="graphType"></param>
        public MatrixGraph(int vertexNum, int edgeNum, int graphType)
        {
            this.vertexNum = vertexNum;
            this.edgeNum = edgeNum;
            this.graphType = graphType;

vertex = new string[vertexNum];
            edges = new int[vertexNum, vertexNum];
            isTrav = new bool[vertexNum];
        }

}
    #endregion

/// <summary>
/// 图的操作类
/// </summary>
    public class MatrixGraphManager
    {
        #region 图的创建
        /// <summary>
/// 图的创建
/// </summary>
/// <param name="g"></param>
        public MatrixGraph CreateMatrixGraph()
        {
            Console.WriteLine("请输入创建图的顶点个数,边个数,是否为无向图(0,1来表示),已逗号隔开。");

var initData = Console.ReadLine().Split(',').Select(i => int.Parse(i)).ToList();

MatrixGraph graph = new MatrixGraph(initData[0], initData[1], initData[2]);

Console.WriteLine("请输入各顶点信息:");

for (int i = 0; i < graph.vertexNum; i++)
            {
                Console.Write("\n第" + (i + 1) + "个顶点为:");

var single = Console.ReadLine();

//顶点信息加入集合中
                graph.vertex[i] = single;
            }

Console.WriteLine("\n请输入构成两个顶点的边和权值,以逗号隔开。\n");

for (int i = 0; i < graph.edgeNum; i++)
            {
                Console.Write("第" + (i + 1) + "条边:\t");

initData = Console.ReadLine().Split(',').Select(j => int.Parse(j)).ToList();

int start = initData[0];
                int end = initData[1];
                int weight = initData[2];

//给矩阵指定坐标位置赋值
                graph.edges[start - 1, end - 1] = weight;

//如果是无向图,则数据呈“二,四”象限对称
                if (graph.graphType == 1)
                {
                    graph.edges[end - 1, start - 1] = weight;
                }
            }

return graph;
        }
        #endregion

#region 输出矩阵数据
        /// <summary>
/// 输出矩阵数据
/// </summary>
/// <param name="graph"></param>
        public void OutMatrix(MatrixGraph graph)
        {
            for (int i = 0; i < graph.vertexNum; i++)
            {
                for (int j = 0; j < graph.vertexNum; j++)
                {
                    Console.Write(graph.edges[i, j] + "\t");
                }
                //换行
                Console.WriteLine();
            }
        }
        #endregion

#region 广度优先
        /// <summary>
/// 广度优先
/// </summary>
/// <param name="graph"></param>
        public void BFSTraverse(MatrixGraph graph)
        {
            //访问标记默认初始化
            for (int i = 0; i < graph.vertexNum; i++)
            {
                graph.isTrav[i] = false;
            }

//遍历每个顶点
            for (int i = 0; i < graph.vertexNum; i++)
            {
                //广度遍历未访问过的顶点
                if (!graph.isTrav[i])
                {
                    BFSM(ref graph, i);
                }
            }
        }

/// <summary>
/// 广度遍历具体算法
/// </summary>
/// <param name="graph"></param>
        public void BFSM(ref MatrixGraph graph, int vertex)
        {
            //这里就用系统的队列
            Queue<int> queue = new Queue<int>();

//先把顶点入队
            queue.Enqueue(vertex);

//标记此顶点已经被访问
            graph.isTrav[vertex] = true;

//输出顶点
            Console.Write(" ->" + graph.vertex[vertex]);

//广度遍历顶点的邻接点
            while (queue.Count != 0)
            {
                var temp = queue.Dequeue();

//遍历矩阵的横坐标
                for (int i = 0; i < graph.vertexNum; i++)
                {
                    if (!graph.isTrav[i] && graph.edges[temp, i] != 0)
                    {
                        graph.isTrav[i] = true;

queue.Enqueue(i);

//输出未被访问的顶点
                        Console.Write(" ->" + graph.vertex[i]);
                    }
                }
            }
        }
        #endregion

#region 深度优先
        /// <summary>
/// 深度优先
/// </summary>
/// <param name="graph"></param>
        public void DFSTraverse(MatrixGraph graph)
        {
            //访问标记默认初始化
            for (int i = 0; i < graph.vertexNum; i++)
            {
                graph.isTrav[i] = false;
            }

//遍历每个顶点
            for (int i = 0; i < graph.vertexNum; i++)
            {
                //广度遍历未访问过的顶点
                if (!graph.isTrav[i])
                {
                    DFSM(ref graph, i);
                }
            }
        }

#region 深度递归的具体算法
        /// <summary>
/// 深度递归的具体算法
/// </summary>
/// <param name="graph"></param>
/// <param name="vertex"></param>
        public void DFSM(ref MatrixGraph graph, int vertex)
        {
            Console.Write("->" + graph.vertex[vertex]);

//标记为已访问
            graph.isTrav[vertex] = true;

//要遍历的六个点
            for (int i = 0; i < graph.vertexNum; i++)
            {
                if (graph.isTrav[i] == false && graph.edges[vertex, i] != 0)
                {
                    //深度递归
                    DFSM(ref graph, i);
                }
            }
        }
        #endregion
        #endregion

}
}

代码中我们构建了如下的“图”。

(0)

相关推荐

  • 算法系列15天速成 第七天 线性表【上】

    哈哈,我们的数据也一样,存在这三种基本关系,用术语来说就是: <1>  线性关系.<2>  树形关系.<3>  网状关系. 一: 线性表 1 概念:                 线性表也就是关系户中最简单的一种关系,一对一.                  如:学生学号的集合就是一个线性表. 2 特征:                 ① 有且只有一个"首元素".                 ② 有且只有一个"末元素".

  • 算法系列15天速成——第十三天 树操作【下】

    听说赫夫曼胜过了他的导师,被认为"青出于蓝而胜于蓝",这句话也是我比较欣赏的,嘻嘻. 一  概念 了解"赫夫曼树"之前,几个必须要知道的专业名词可要熟练记住啊. 1: 结点的权 "权"就相当于"重要度",我们形象的用一个具体的数字来表示,然后通过数字的大小来决定谁重要,谁不重要. 2: 路径 树中从"一个结点"到"另一个结点"之间的分支. 3: 路径长度 一个路径上的分支数量. 4: 树

  • 算法系列15天速成 第四天 五大经典查找【上】

    在我们的算法中,有一种叫做线性查找. 分为:顺序查找.        折半查找. 查找有两种形态: 分为:破坏性查找,   比如有一群mm,我猜她们的年龄,第一位猜到了是23+,此时这位mm已经从我脑海里面的mmlist中remove掉了. 哥不找23+的,所以此种查找破坏了原来的结构. 非破坏性查找, 这种就反之了,不破坏结构. 顺序查找: 这种非常简单,就是过一下数组,一个一个的比,找到为止. 复制代码 代码如下: using System;using System.Collections.

  • 算法系列15天速成 第十二天 树操作【中】

    先前说了树的基本操作,我们采用的是二叉链表来保存树形结构,当然二叉有二叉的困扰之处,比如我想找到当前结点的"前驱"和"后继",那么我们就必须要遍历一下树,然后才能定位到该"节点"的"前驱"和"后继",每次定位都是O(n),这不是我们想看到的,那么有什么办法来解决呢? (1) 在节点域中增加二个指针域,分别保存"前驱"和"后继",那么就是四叉链表了,哈哈,还是有点浪费空

  • 算法系列15天速成 第十天 栈

    一: 概念 栈,同样是一种特殊的线性表,是一种Last In First Out(LIFO)的形式,现实中有很多这样的例子, 比如:食堂中的一叠盘子,我们只能从顶端一个一个的取. 二:存储结构 "栈"不像"队列",需要两个指针来维护,栈只需要一个指针就够了,这得益于栈是一种一端受限的线性表. 这里同样用"顺序结构"来存储这个"栈",top指针指向栈顶,所有的操作只能在top处. 代码段: 复制代码 代码如下: #region

  • 算法系列15天速成 第十一天 树操作(上)

    先前我们讲的都是"线性结构",他的特征就是"一个节点最多有一个"前驱"和一个"后继".那么我们今天讲的树会是怎样的呢? 我们可以对"线性结构"改造一下,变为"一个节点最多有一个"前驱"和"多个后继".哈哈,这就是我们今天说的"树". 一: 树 我们思维中的"树"就是一种枝繁叶茂的形象,那么数据结构中的"树"该

  • 算法系列15天速成 第三天 七大经典排序【下】

    直接插入排序: 这种排序其实蛮好理解的,很现实的例子就是俺们斗地主,当我们抓到一手乱牌时,我们就要按照大小梳理扑克,30秒后, 扑克梳理完毕,4条3,5条s,哇塞......  回忆一下,俺们当时是怎么梳理的. 最左一张牌是3,第二张牌是5,第三张牌又是3,赶紧插到第一张牌后面去,第四张牌又是3,大喜,赶紧插到第二张后面去, 第五张牌又是3,狂喜,哈哈,一门炮就这样产生了. 怎么样,生活中处处都是算法,早已经融入我们的生活和血液. 下面就上图说明:              看这张图不知道大家可

  • 算法系列15天速成——第十五天 图【下】(大结局)

    今天是大结局,说下"图"的最后一点东西,"最小生成树"和"最短路径". 一: 最小生成树 1. 概念 首先看如下图,不知道大家能总结点什么. 对于一个连通图G,如果其全部顶点和一部分边构成一个子图G1,当G1满足: ① 刚好将图中所有顶点连通.②顶点不存在回路.则称G1就是G的"生成树". 其实一句话总结就是:生成树是将原图的全部顶点以最小的边连通的子图,这不,如下的连通图可以得到下面的两个生成树. ② 对于一个带权的连通图,

  • 算法系列15天速成 第八天 线性表【下】

    一:线性表的简单回顾 上一篇跟大家聊过"线性表"顺序存储,通过实验,大家也知道,如果我每次向顺序表的头部插入元素,都会引起痉挛,效率比较低下,第二点我们用顺序存储时,容易受到长度的限制,反之就会造成空间资源的浪费. 二:链表 对于顺序表存在的若干问题,链表都给出了相应的解决方案. 1. 概念:其实链表的"每个节点"都包含一个"数据域"和"指针域". "数据域"中包含当前的数据. "指针域"

  • 算法系列15天速成 第九天 队列

    一:概念 队列是一个"先进先出"的线性表,牛X的名字就是"First in First Out(FIFO)",生活中有很多这样的场景,比如读书的时候去食堂打饭时的"排队".当然我们拒绝插队. 二:存储结构 前几天也说过,线性表有两种"存储结构",① 顺序存储,②链式存储.当然"队列"也脱离不了这两种服务,这里我就分享一下"顺序存储". 顺序存储时,我们会维护一个叫做"head头

  • 算法系列15天速成 第六天 五大经典查找【下】

    大家是否感觉到,树在数据结构中大行其道,什么领域都要沾一沾,碰一碰.就拿我们前几天学过的排序就用到了堆和今天讲的"二叉排序树",所以偏激的说,掌握的树你就是牛人了. 今天就聊聊这个"五大经典查找"中的最后一个"二叉排序树". 1. 概念:     <1> 其实很简单,若根节点有左子树,则左子树的所有节点都比根节点小.                             若根节点有右子树,则右子树的所有节点都比根节点大.     &

  • 算法系列15天速成 第五天 五大经典查找【中】

    哈希查找: 对的,他就是哈希查找,说到哈希,大家肯定要提到哈希函数,呵呵,这东西已经在我们脑子里面形成固有思维了.大家一定要知道"哈希"中的对应关系.     比如说: "5"是一个要保存的数,然后我丢给哈希函数,哈希函数给我返回一个"2",那么此时的"5"和"2"就建立一种对应关系,这种关系就是所谓的"哈希关系",在实际应用中也就形成了"2"是key,"5

  • 算法系列15天速成 第二天 七大经典排序【中】

    首先感谢朋友们对第一篇文章的鼎力支持,感动中.......  今天说的是选择排序,包括"直接选择排序"和"堆排序". 话说上次"冒泡排序"被快排虐了,而且"快排"赢得了内库的重用,众兄弟自然眼红,非要找快排一比高下. 这不今天就来了两兄弟找快排算账. 1.直接选择排序: 先上图: 说实话,直接选择排序最类似于人的本能思想,比如把大小不一的玩具让三岁小毛孩对大小排个序, 那小孩首先会在这么多玩具中找到最小的放在第一位,然后找到次

  • 算法系列15天速成 第一天 七大经典排序【上】

    针对现实中的排序问题,算法有七把利剑可以助你马道成功. 首先排序分为四种:       交换排序: 包括冒泡排序,快速排序.      选择排序: 包括直接选择排序,堆排序.      插入排序: 包括直接插入排序,希尔排序.      合并排序: 合并排序. 那么今天我们讲的就是交换排序,我们都知道,C#类库提供的排序是快排,为了让今天玩的有意思点,我们设计算法来跟类库提供的快排较量较量.争取KO对手. 冒泡排序: 首先我们自己来设计一下"冒泡排序",这种排序很现实的例子就是:我抓一

随机推荐