一个Python案例带你掌握xpath数据解析方法
目录
- xpath基本概念
- xpath解析原理
- 环境安装
- 如何实例化一个etree对象
- xpath(‘xpath表达式’)
- xpath爬取58二手房实例
- xpath图片解析下载实例
- xpath爬取全国城市名称实例
- xpath爬取简历模板实例
xpath基本概念
xpath解析:最常用且最便捷高效的一种解析方式。通用性强。
xpath解析原理
1.实例化一个etree的对象,且需要将被解析的页面源码数据加载到该对象中
2.调用etree对象中的xpath方法结合xpath表达式实现标签的定位和内容的捕获。
环境安装
pip install lxml
如何实例化一个etree对象
from lxml import etree
1.将本地的html文件中的远吗数据加载到etree对象中:
etree.parse(filePath)
2.可以将从互联网上获取的原码数据加载到该对象中:
etree.HTML(‘page_text')
xpath(‘xpath表达式’)
1./:表示的是从根节点开始定位。表示一个层级
2.//:表示多个层级。可以表示从任意位置开始定位
3.属性定位://div[@class='song'] tag[@attrName='attrValue']
4.索引定位://div[@class='song']/p[3] 索引从1开始的
5.取文本:
- /text()获取的是标签中直系的文本内容
- //text()标签中非直系的文本内容(所有文本内容)
6.取属性:/@attrName ==>img/src
xpath爬取58二手房实例
完整代码
from lxml import etree import requests if __name__ == '__main__': headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.105 Safari/537.36' } url = 'https://xa.58.com/ershoufang/' page_text = requests.get(url=url,headers=headers).text tree = etree.HTML(page_text) div_list = tree.xpath('//section[@class="list"]/div') fp = open('./58同城二手房.txt','w',encoding='utf-8') for div in div_list: title = div.xpath('.//div[@class="property-content-title"]/h3/text()')[0] print(title) fp.write(title+'\n'+'\n')
xpath图片解析下载实例
完整代码
import requests,os from lxml import etree if __name__ == '__main__': headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.105 Safari/537.36' } url = 'https://pic.netbian.com/4kmeinv/' page_text = requests.get(url=url,headers=headers).text tree = etree.HTML(page_text) li_list = tree.xpath('//div[@class="slist"]/ul/li/a') if not os.path.exists('./piclibs'): os.mkdir('./piclibs') for li in li_list: detail_url ='https://pic.netbian.com' + li.xpath('./img/@src')[0] detail_name = li.xpath('./img/@alt')[0]+'.jpg' detail_name = detail_name.encode('iso-8859-1').decode('GBK') detail_path = './piclibs/' + detail_name detail_data = requests.get(url=detail_url, headers=headers).content with open(detail_path,'wb') as fp: fp.write(detail_data) print(detail_name,'seccess!!')
xpath爬取全国城市名称实例
完整代码
import requests from lxml import etree if __name__ == '__main__': url = 'https://www.aqistudy.cn/historydata/' headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.141 Safari/537.36', } page_text = requests.get(url=url,headers=headers).content.decode('utf-8') tree = etree.HTML(page_text) #热门城市 //div[@class="bottom"]/ul/li #全部城市 //div[@class="bottom"]/ul/div[2]/li a_list = tree.xpath('//div[@class="bottom"]/ul/li | //div[@class="bottom"]/ul/div[2]/li') fp = open('./citys.txt','w',encoding='utf-8') i = 0 for a in a_list: city_name = a.xpath('.//a/text()')[0] fp.write(city_name+'\t') i=i+1 if i == 6: i = 0 fp.write('\n') print('爬取成功')
xpath爬取简历模板实例
完整代码
import requests,os from lxml import etree if __name__ == '__main__': url = 'https://sc.chinaz.com/jianli/free.html' headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.141 Safari/537.36', } page_text = requests.get(url=url,headers=headers).content.decode('utf-8') tree = etree.HTML(page_text) a_list = tree.xpath('//div[@class="box col3 ws_block"]/a') if not os.path.exists('./简历模板'): os.mkdir('./简历模板') for a in a_list: detail_url = 'https:'+a.xpath('./@href')[0] detail_page_text = requests.get(url=detail_url,headers=headers).content.decode('utf-8') detail_tree = etree.HTML(detail_page_text) detail_a_list = detail_tree.xpath('//div[@class="clearfix mt20 downlist"]/ul/li[1]/a') for a in detail_a_list: download_name = detail_tree.xpath('//div[@class="ppt_tit clearfix"]/h1/text()')[0] download_url = a.xpath('./@href')[0] download_data = requests.get(url=download_url,headers=headers).content download_path = './简历模板/'+download_name+'.rar' with open(download_path,'wb') as fp: fp.write(download_data) print(download_name,'success!!')
以上就是一个Python案例带你掌握xpath数据解析方法的详细内容,更多关于Python xpath数据解析的资料请关注我们其它相关文章!
赞 (0)