redis分布式锁及会出现的问题解决

一、redis实现分布式锁的主要原理:

1.加锁

最简单的方法是使用setnx命令。key是锁的唯一标识,按业务来决定命名。比如想要给一种商品的秒杀活动加锁,可以给key命名为 “lock_sale_商品ID” 。而value设置成什么呢?我们可以姑且设置成1。加锁的伪代码如下:
setnx(key,1)

当一个线程执行setnx返回1,说明key原本不存在,该线程成功得到了锁;当一个线程执行setnx返回0,说明key已经存在,该线程抢锁失败。

2.解锁

有加锁就得有解锁。当得到锁的线程执行完任务,需要释放锁,以便其他线程可以进入。释放锁的最简单方式是执行del指令,伪代码如下:

del(key)

释放锁之后,其他线程就可以继续执行setnx命令来获得锁。

3.锁超时

锁超时是什么意思呢?如果一个得到锁的线程在执行任务的过程中挂掉,来不及显式地释放锁,这块资源将会永远被锁住,别的线程再也别想进来。

所以,setnx的key必须设置一个超时时间,以保证即使没有被显式释放,这把锁也要在一定时间后自动释放。setnx不支持超时参数,所以需要额外的指令,伪代码如下:

expire(key, 30)

二、加锁的代码

/**
 * 尝试获取分布式锁
 * @param jedis Redis客户端
 * @param lockKey 锁
 * @param requestId 请求标识
 * @param expireTime 超期时间
 * @return 是否获取成功
 */
public static void wrongGetLock1(Jedis jedis, String lockKey, String requestId, int expireTime) {

 Long result = jedis.setnx(lockKey, requestId);
 if (result == 1) {
  // 若在这里程序突然崩溃,则无法设置过期时间,将发生死锁
  jedis.expire(lockKey, expireTime);
 }

}

上面的代码有一个致命的问题,就是加锁和设置过期时间不是原子操作。

那么会有两种极端情况:

一种是在并发情况下,两个线程同时执行setnx,那么得到的结果都是1,这样两个线程同时拿到了锁。

别一种是如代码注释所示,即执行完setnx,程序崩溃没有执行过期时间,那这把锁就永远不会被释放,造成了死锁。

之所以有人这样实现,是因为低版本的jedis并不支持多参数的set()方法。正确的代码如下:

/**
 * 尝试获取分布式锁
 * @param jedis Redis客户端
 * @param lockKey 锁
 * @param requestId 请求标识
 * @param expireTime 超期时间
 * @return 是否获取成功
 */
public static boolean tryGetDistributedLock(Jedis jedis,String lockKey, String requestId, int expireTime) {

    String result = jedis.set(lockKey, requestId, "NX", "PX", expireTime);
    if ("OK".equals(result)) {
      return true;
    }
    return false;

}

这个set()方法一共有五个形参:

第一个为key,我们使用key来当锁,因为key是唯一的。

第二个为value,我们传的是requestId,很多童鞋可能不明白,有key作为锁不就够了吗,为什么还要用到value?原因就是,通过给value赋值为requestId,我们就知道这把锁是哪个请求加的了,在解锁的时候就可以有依据。requestId可以使用UUID.randomUUID().toString()方法生成。

第三个为nxxx,这个参数我们填的是NX,意思是SET IF NOT EXIST,即当key不存在时,我们进行set操作;若key已经存在,则不做任何操作;

第四个为expx,这个参数我们传的是PX,意思是我们要给这个key加一个过期的设置,具体时间由第五个参数决定。

第五个为time,与第四个参数相呼应,代表key的过期时间。

总的来说,执行上面的set()方法就只会导致两种结果:1. 当前没有锁(key不存在),那么就进行加锁操作,并对锁设置个有效期,同时value表示加锁的客户端。2. 已有锁存在,不做任何操作。

二、解锁的代码

public static void wrongReleaseLock1(Jedis jedis, String lockKey) {
  jedis.del(lockKey);
}

这段代码的问题是容易导致误删,假如某线程成功得到了锁,并且设置的超时时间是30秒。如果某些原因导致线程A执行的很慢很慢,过了30秒都没执行完,这时候锁过期自动释放,线程B得到了锁。

随后,线程A执行完了任务,线程A接着执行del指令来释放锁。但这时候线程B还没执行完,线程A实际上删除的是线程B加的锁。

怎么避免这种情况呢?可以在del释放锁之前做一个判断,验证当前的锁是不是自己加的锁。

至于具体的实现,可以在加锁的时候把当前的线程ID当做value,并在删除之前验证key对应的value是不是自己线程的ID。

public static void wrongReleaseLock2(Jedis jedis, String lockKey, String requestId) {

  // 判断加锁与解锁是不是同一个客户端
  if (requestId.equals(jedis.get(lockKey))) {
    // 若在此时,这把锁突然不是这个客户端的,则会误解锁
    jedis.del(lockKey);
  }

}

但是,这样做又隐含了一个新的问题,判断和释放锁是两个独立操作,不是原子性。

解决方案就是使用lua脚本,把它变成原子操作,代码如下:

public class RedisTool {

  private static final Long RELEASE_SUCCESS = 1L;

  /**
   * 释放分布式锁
   * @param jedis Redis客户端
   * @param lockKey 锁
   * @param requestId 请求标识
   * @return 是否释放成功
   */
  public static boolean releaseDistributedLock(Jedis jedis, String lockKey, String requestId) {

    String script = "if redis.call('get', KEYS[1]) == ARGV[1] then return redis.call('del', KEYS[1]) else return 0 end";
    Object result = jedis.eval(script, Collections.singletonList(lockKey), Collections.singletonList(requestId));

    if (RELEASE_SUCCESS.equals(result)) {
      return true;
    }
    return false;

  }

}

三、续约问题

上面加锁最后的代码就完美了吗?假想这样一个场景,如果过期时间为30S,A线程超过30S还没执行完,但是自动过期了。这时候B线程就会再拿到锁,造成了同时有两个线程持有锁。这个问题可以归结为”续约“问题,即A没执行完时应该过期时间续约,执行完成才能释放锁。怎么办呢?我们可以让获得锁的线程开启一个守护线程,用来给快要过期的锁“续约”。

其实,后面解锁出现的删除非自己锁,也属于“续约”问题。

四、集群同步延迟问题

用于redis的服务肯定不能是单机,因为单机就不是高可用了,一量挂掉整个分布式锁就没用了。

在集群场景下,如果A在master拿到了锁,在没有把数据同步到slave时,master挂掉了。B再拿锁就会从slave拿锁,而且会拿到。又出现了两个线程同时拿到锁。

基于以上的考虑,Redis 的作者也考虑到这个问题,他提出了一个 RedLock 的算法。

这个算法的意思大概是这样的:假设 Redis 的部署模式是 Redis Cluster,总共有 5 个 Master 节点。

通过以下步骤获取一把锁:

  • 获取当前时间戳,单位是毫秒。
  • 轮流尝试在每个 Master 节点上创建锁,过期时间设置较短,一般就几十毫秒。
  • 尝试在大多数节点上建立一个锁,比如 5 个节点就要求是 3 个节点(n / 2 +1)。
  • 客户端计算建立好锁的时间,如果建立锁的时间小于超时时间,就算建立成功了。
  • 要是锁建立失败了,那么就依次删除这个锁。
  • 只要别人建立了一把分布式锁,你就得不断轮询去尝试获取锁。

但是这样的这种算法还是颇具争议的,可能还会存在不少的问题,无法保证加锁的过程一定正确。

这个问题的根本原因就是redis的集群属于AP,分布式锁属于CP,用AP去实现CP是不可能的。

五、Redisson

Redisson是架设在Redis基础上的一个Java驻内存数据网格(In-Memory Data Grid)。充分的利用了Redis键值数据库提供的一系列优势,基于Java实用工具包中常用接口,为使用者提供了一系列具有分布式特性的常用工具类。

Redisson通过lua脚本解决了上面的原子性问题,通过“看门狗”解决了续约问题,但是它应该解决不了集群中的同步延迟问题。

总结

redis分布式锁的方案,无论用何种方式实现都会有续约问题与集群同步延迟问题。总的来说,是一个不太靠谱的方案。如果追求高正确率,不能采用这种方案。

但是它也有优点,就是比较简单,在某些非严格要求的场景是可以使用的,比如社交系统一类,交易系统一类不能出现重复交易则不建议用。

到此这篇关于redis分布式锁及会出现的问题解决的文章就介绍到这了,更多相关redis分布式锁内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Redis上实现分布式锁以提高性能的方案研究

    背景: 在很多互联网产品应用中,有些场景需要加锁处理,比如:秒杀,全局递增ID,楼层生成等等.大部分是解决方案基于DB实现的,Redis为单进程单线程模式,采用队列模式将并发访问变成串行访问,且多客户端对Redis的连接并不存在竞争关系. 项目实践 任务队列用到分布式锁的情况比较多,在将业务逻辑中可以异步处理的操作放入队列,在其他线程中处理后出队,此时队列中使用了分布式锁,保证入队和出队的一致性.关于redis队列这块的逻辑分析,我将在下一次对其进行总结,此处先略过. 接下来对redis实现的分

  • 详解Java如何实现基于Redis的分布式锁

    前言 单JVM内同步好办, 直接用JDK提供的锁就可以了,但是跨进程同步靠这个肯定是不可能的,这种情况下肯定要借助第三方,我这里实现用Redis,当然还有很多其他的实现方式.其实基于Redis实现的原理还算比较简单的,在看代码之前建议大家先去看看原理,看懂了之后看代码应该就容易理解了. 我这里不实现JDK的java.util.concurrent.locks.Lock接口,而是自定义一个,因为JDK的有个newCondition方法我这里暂时没实现.这个Lock提供了5个lock方法的变体,可以

  • Redis实现分布式锁的几种方法总结

    Redis实现分布式锁的几种方法总结 分布式锁是控制分布式系统之间同步访问共享资源的一种方式.在分布式系统中,常常需要协调他们的动作.如果不同的系统或是同一个系统的不同主机之间共享了一个或一组资源,那么访问这些资源的时候,往往需要互斥来防止彼此干扰来保证一致性,在这种情况下,便需要使用到分布式锁. 我们来假设一个最简单的秒杀场景:数据库里有一张表,column分别是商品ID,和商品ID对应的库存量,秒杀成功就将此商品库存量-1.现在假设有1000个线程来秒杀两件商品,500个线程秒杀第一个商品,

  • 深入理解redis分布式锁和消息队列

    最近博主在看redis的时候发现了两种redis使用方式,与之前redis作为缓存不同,利用的是redis可设置key的有效时间和redis的BRPOP命令. 分布式锁 由于目前一些编程语言,如PHP等,不能在内存中使用锁,或者如Java这样的,需要一下更为简单的锁校验的时候,redis分布式锁的使用就足够满足了. redis的分布式锁其实就是基于setnx方法和redis对key可设置有效时间的功能来实现的.基本用法比较简单. public boolean tryLock(String loc

  • 详解使用Redis SETNX 命令实现分布式锁

    使用Redis的 SETNX 命令可以实现分布式锁,下文介绍其实现方法. SETNX命令简介 命令格式 SETNX key value 将 key 的值设为 value,当且仅当 key 不存在. 若给定的 key 已经存在,则 SETNX 不做任何动作. SETNX 是SET if Not eXists的简写. 返回值 返回整数,具体为 - 1,当 key 的值被设置 - 0,当 key 的值没被设置 例子 redis> SETNX mykey "hello" (integer

  • 基于redis分布式锁实现秒杀功能

    最近在项目中遇到了类似"秒杀"的业务场景,在本篇博客中,我将用一个非常简单的demo,阐述实现所谓"秒杀"的基本思路. 业务场景 所谓秒杀,从业务角度看,是短时间内多个用户"争抢"资源,这里的资源在大部分秒杀场景里是商品:将业务抽象,技术角度看,秒杀就是多个线程对资源进行操作,所以实现秒杀,就必须控制线程对资源的争抢,既要保证高效并发,也要保证操作的正确. 一些可能的实现 刚才提到过,实现秒杀的关键点是控制线程对资源的争抢,根据基本的线程知识,可

  • redis中使用java脚本实现分布式锁

    redis被大量用在分布式的环境中,自然而然分布式环境下的锁如何解决,立马成为一个问题.例如我们当前的手游项目,服务器端是按业务模块划分服务器的,有应用服,战斗服等,但是这两个vm都有可能同时改变玩家的属性,这如果在同一个vm下面,就很容易加锁,但如果在分布式环境下就没那么容易了,当然利用redis现有的功能也有解决办法,比如redis的脚本. redis在2.6以后的版本中增加了Lua脚本的功能,可以通过eval命令,直接在RedisServer环境中执行Lua脚本,并且可以在Lua脚本中调用

  • 基于Redis实现分布式锁以及任务队列

    一.前言 双十一刚过不久,大家都知道在天猫.京东.苏宁等等电商网站上有很多秒杀活动,例如在某一个时刻抢购一个原价1999现在秒杀价只要999的手机时,会迎来一个用户请求的高峰期,可能会有几十万几百万的并发量,来抢这个手机,在高并发的情形下会对数据库服务器或者是文件服务器应用服务器造成巨大的压力,严重时说不定就宕机了,另一个问题是,秒杀的东西都是有量的,例如一款手机只有10台的量秒杀,那么,在高并发的情况下,成千上万条数据更新数据库(例如10台的量被人抢一台就会在数据集某些记录下 减1),那次这个

  • 浅谈Redis分布式锁的正确实现方式

    前言 分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介绍Redis分布式锁实现的博客,然而他们的实现却有着各种各样的问题,为了避免误人子弟,本篇博客将详细介绍如何正确地实现Redis分布式锁. 可靠性 首先,为了确保分布式锁可用,我们至少要确保锁的实现同时满足以下四个条件: 1.互斥性.在任意时刻,只有一个客户端能持有锁. 2.不会发生死锁.即使有一个

  • Redis数据库中实现分布式锁的方法

    分布式锁是一个在很多环境中非常有用的原语,它是不同进程互斥操作共享资源的唯一方法.有很多的开发库和博客描述如何使用Redis实现DLM(Distributed Lock Manager),但是每个开发库使用不同的方式,而且相比更复杂的设计与实现,很多库使用一些简单低可靠的方式来实现. 这篇文章尝试提供更标准的算法来使用Redis实现分布式锁.我们提出一种算法,叫做Relock,它实现了我们认为比vanilla单一实例方式更安全的DLM(分布式锁管理).我们希望社区分析它并提供反馈,以做为更加复杂

随机推荐