pandas 根据列的值选取所有行的示例
如下所示:
# 选取等于某些值的行记录 用 == df.loc[df['column_name'] == some_value] # 选取某列是否是某一类型的数值 用 isin df.loc[df['column_name'].isin(some_values)] # 多种条件的选取 用 & df.loc[(df['column'] == some_value) & df['other_column'].isin(some_values)] # 选取不等于某些值的行记录 用 != df.loc[df['column_name'] != some_value] # isin返回一系列的数值,如果要选择不符合这个条件的数值使用~ df.loc[~df['column_name'].isin(some_values)]
以上这篇pandas 根据列的值选取所有行的示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
pandas带有重复索引操作方法
有的时候,可能会遇到表格中出现重复的索引,在操作重复索引的时候可能要注意一些问题. 一.判断索引是否重复 a.Series索引重复判断 s = Series([1,2,3,4,5],index=["a","a","b","b","c"]) print(s.index.is_unique) #False Series.index.is_unique为False表示索引重复. b.DataFrame索引重复判断
-
Pandas统计重复的列里面的值方法
pandas 代码如下: import pandas as pd import numpy as np salaries = pd.DataFrame({ 'name': ['BOSS', 'Lilei', 'Lilei', 'Han', 'BOSS', 'BOSS', 'Han', 'BOSS'], 'Year': [2016, 2016, 2016, 2016, 2017, 2017, 2017, 2017], 'Salary': [1, 2, 3, 4, 5, 6, 7, 8], 'Bon
-
pandas去除重复列的实现方法
数据准备 假设我们目前有两个数据表: ① 一个数据表是关于三个人他们的id以及其他的几列属性信息 import pandas as pd import numpy as np data = pd.DataFrame(np.random.randint(low=1,high=20,size=(3,4))) data['id'] = range(1,4) # 输出:其中,最左边的0 1 2 为其索引 ② 另外一个数据表是3个用户的app操作日志信息,一个人会有多条app操作记录 sample = p
-
pandas数据框,统计某列数据对应的个数方法
现在要解决的问题如下: 我们有一个数据的表 第7列有许多数字,并且是用逗号分隔的,数字又有一个对应的关系: 我们要得到第7列对应关系的统计,就是每一行的第7列a有多少个,b有多少个 好了,我给的解决方法如下: #!/bin/python #-*-coding:UTF-8-*- import pandas as pd import numpy as np dfidspec = pd.read_table("one.txt")#这个是对应关系的文件 dfmgs = pd.read_tabl
-
Pandas标记删除重复记录的方法
Pandas提供了duplicated.Index.duplicated.drop_duplicates函数来标记及删除重复记录 duplicated函数用于标记Series中的值.DataFrame中的记录行是否是重复,重复为True,不重复为False pandas.DataFrame.duplicated(self, subset=None, keep='first') pandas.Series.duplicated(self, keep='first') 其中参数解释如下: subse
-
pandas 根据列的值选取所有行的示例
如下所示: # 选取等于某些值的行记录 用 == df.loc[df['column_name'] == some_value] # 选取某列是否是某一类型的数值 用 isin df.loc[df['column_name'].isin(some_values)] # 多种条件的选取 用 & df.loc[(df['column'] == some_value) & df['other_column'].isin(some_values)] # 选取不等于某些值的行记录 用 != df.l
-
Python Pandas中根据列的值选取多行数据
Pandas中根据列的值选取多行数据 # 选取等于某些值的行记录 用 == df.loc[df['column_name'] == some_value] # 选取某列是否是某一类型的数值 用 isin df.loc[df['column_name'].isin(some_values)] # 多种条件的选取 用 & df.loc[(df['column'] == some_value) & df['other_column'].isin(some_values)] # 选取不等于某些值的
-
pandas按照列的值排序(某一列或者多列)
按照某一列排序 d = {'A': [3, 6, 6, 7, 9], 'B': [2, 5, 8, 0, 0]} df = pd.DataFrame(data=d) print('排序前:\n', df) ''' 排序前: A B 0 3 2 1 6 5 2 6 8 3 7 0 4 9 0 ''' res = df.sort_values(by='A', ascending=False) print('按照A列的值排序:\n', res) ''' 按照A列的值排序: A B 4 9 0 3 7
-
使用pandas两列转换成字典的健和值
目录 pandas两列转换成字典的健和值 两列转换成字典的key和value 列名变成字典的key pandas两列的值转dict pandas两列转换成字典的健和值 两列转换成字典的key和value df: name age Mary 26 Sellina 28 Zaca 27 想将name这列变成字典的健,年龄对应成字典的值,健值对应如下: {'Mary':26,'Sellina':28,'Zaca':27} import pandas as pd import pandas as pd
-
用pandas中的DataFrame时选取行或列的方法
如下所示: import numpy as np import pandas as pd from pandas import Sereis, DataFrame ser = Series(np.arange(3.)) data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz')) data['w'] #选择表格中的'w'列,使用类字典属性,返回的是Series类型 data.w #选择表格
-
pandas把dataframe转成Series,改变列中值的类型方法
使用 pd.Series把dataframe转成Series ts = pd.Series(df['Value'].values, index=df['Date']) 使用astype改变列中的值的类型,注意前面要有np df['列名'] = df['列名'].astype(np.int64) 以上这篇pandas把dataframe转成Series,改变列中值的类型方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们. 您可能感兴趣的文章: python panda
-
pandas DataFrame 根据多列的值做判断,生成新的列值实例
环境:Python3.6.4 + pandas 0.22 主要是DataFrame.apply函数的应用,如果设置axis参数为1则每次函数每次会取出DataFrame的一行来做处理,如果axis为1则每次取一列. 如代码所示,判断如果城市名中含有ing字段且年份为2016,则新列test值赋为1,否则为0. import numpy as np import pandas as pd data = {'city': ['Beijing', 'Shanghai', 'Guangzhou', 'S
-
使用Python的Dataframe取两列时间值相差一年的所有行方法
在使用Python处理数据时,经常需要对数据筛选. 这是在对时间筛选时,判断两列时间是否相差一年,如果是,则返回符合条件的所有列. data原始数据: data[map(lambda x:datetime.date(x.year-1,x.month,x.day),data['report_date'])==data['date_1y_ago']] company_id signal_code_x signal_value_x report_date signal_code_y signal_va
-
Pandas多列值合并成一列的实现
在平时的需求开发中涉及到将多列值合并为一列值的操作,通过查阅相关资料特此记录以下方法,方便日后学习复盘 import pandas as pd import numpy as np df = pd.DataFrame(data={'语文':[50,90,70,78,60], '数学':[59,80,60,75,69], '英语':[61,95,65,80,59]}, index=['Harry','Andy','Rita','Lee','Jack']) # 添加'总分'字段 df['总分'] =
-
pandas中按行或列的值对数据排序的实现
目录 一. 按列的值对数据排序 1.按某一列的值对数据排序 2. 按多列的值对数据排序 3. key 参数:设置排序时的数据变换函数 4. 修改原数据 二. 按行的值对数据排序 参考 在处理表格型数据时,常会用到排序,比如,按某一行或列的值对表格排序,要怎么做呢? 这就要用到 pandas 中的 sort_values() 函数. 一. 按列的值对数据排序 先来看最常见的情况. 1.按某一列的值对数据排序 以下面的数据为例. import pandas as pd df_col = pd.Dat
随机推荐
- Access使用查询--1.1. 用选择查询建立计算字段
- Vue实现virtual-dom的原理简析
- bootstrap-datetimepicker实现只显示到日期的方法
- Java生成含字母和数字的6位随机字符串
- JavaScript设计模式经典之工厂模式
- phpMyAdmin下载、安装和使用入门教程
- PHP 地址栏信息的获取代码
- PHP MVC模式在网站架构中的实现分析
- 简单谈谈Python中的闭包
- 修改mysql允许主机访问的权限方法
- php header函数的常用http头设置
- 用正则xmlHttp实现的偷(转)
- jQuery动态追加页面数据以及事件委托详解
- js取消单选按钮选中并判断对象是否为空
- 独门绝技修改注册表
- 分享一下8年C++面向对象设计的经验体会
- JavaWeb Struts文件上传功能实现详解
- java读取resources文件详解及实现代码
- React-Native之定时器Timer的实现代码
- Fastjson 常用API介绍及下载地址(推荐)