pandas数据清洗,排序,索引设置,数据选取方法

此教程适合有pandas基础的童鞋来看,很多知识点会一笔带过,不做详细解释

Pandas数据格式

Series

DataFrame:每个column就是一个Series

基础属性shape,index,columns,values,dtypes,describe(),head(),tail()

统计属性Series: count(),value_counts(),前者是统计总数,后者统计各自value的总数

df.isnull() df的空值为True

df.notnull() df的非空值为True

修改列名

df.rename(columns = {'key':'key2'},inplace=True)

更改数据格式astype()

isin     #计算一个“Series各值是否包含传入的值序列中”的布尔数组
unique    #返回唯一值的数组
value_counts   #返回一个Series,其索引为唯一值,值为频率,按计数降序排列

数据清洗

丢弃值drop()

df.drop(labels, axis=1)# 按列(axis=1),丢弃指定label的列,默认按行。。。

丢弃缺失值dropna()

# 默认axi=0(行);1(列),how=‘any'
df.dropna()#每行只要有空值,就将这行删除
df.dropna(axis=1)#每列只要有空值,整列丢弃
df.dropna(how='all')# 一行中全部为NaN的,才丢弃该行
df.dropna(thresh=3)# 每行至少3个非空值才保留

缺失值填充fillna()

df.fillna(0)
df.fillna({1:0,2:0.5}) #对第一列nan值赋0,第二列赋值0.5
df.fillna(method='ffill') #在列方向上以前一个值作为值赋给NaN

值替换replace()

# 将df的A列中 -999 全部替换成空值
df['A'].replace(-999, np.nan)
#-999和1000 均替换成空值
obj.replace([-999,1000], np.nan)
# -999替换成空值,1000替换成0
obj.replace([-999,1000], [np.nan, 0])
# 同上,写法不同,更清晰
obj.replace({-999:np.nan, 1000:0})

重复值处理duplicated(),unique(),drop_duplictad()

df.duplicated()#两行每列完全一样才算重复,后面重复的为True,第一个和不重复的为false,返回true
    #和false组成的Series类型
df.duplicated('key')#两行key这一列一样就算重复

df['A'].unique()# 返回唯一值的数组(类型为array)

df.drop_duplicates(['k1'])# 保留k1列中的唯一值的行,默认保留第一行
df.drop_duplicates(['k1','k2'], take_last=True)# 保留 k1和k2 组合的唯一值的行,take_last=True 保留最后一行

排序

索引排序

# 默认axis=0,按行索引对行进行排序;ascending=True,升序排序
df.sort_index()
# 按列名对列进行排序,ascending=False 降序
df.sort_index(axis=1, ascending=False) 

值排序

# 按值对Series进行排序,使用order(),默认空值会置于尾部
s = pd.Series([4, 6, np.nan, 2, np.nan])
s.order()

df.sort_values(by=['a','b'])#按列进行排序

排名

a=Series([7,-5,7,4,2,0,4])
a.rank()#默认method='average',升序排名(ascending=True),按行(axis=0)
#average 值相等时,取排名的平均值
#min 值相等时,取排名最小值
#max 值相等时,取排名最大值
#first值相等时,按原始数据出现顺序排名

索引设置

reindex()

更新index或者columns,

默认:更新index,返回一个新的DataFrame

# 返回一个新的DataFrame,更新index,原来的index会被替代消失
# 如果dataframe中某个索引值不存在,会自动补上NaN
df2 = df1.reindex(['a','b','c','d','e'])

# fill_valuse为原先不存在的索引补上默认值,不在是NaN
df2 = df1.reindex(['a','b','c','d','e'], fill_value=0)

# inplace=Ture,在DataFrame上修改数据,而不是返回一个新的DataFrame
df1.reindex(['a','b','c','d','e'], inplace=Ture)

# reindex不仅可以修改 索引(行),也可以修改列
states = ["Texas","Utah","California"]
df2 = df1.reindex( columns=states )

set_index()

将DataFrame中的列columns设置成索引index

打造层次化索引的方法

# 将columns中的其中两列:race和sex的值设置索引,race为一级,sex为二级
# inplace=True 在原数据集上修改的
adult.set_index(['race','sex'], inplace = True) 

# 默认情况下,设置成索引的列会从DataFrame中移除
# drop=False将其保留下来
adult.set_index(['race','sex'], inplace = True)

reset_index()

将使用set_index()打造的层次化逆向操作

既是取消层次化索引,将索引变回列,并补上最常规的数字索引

df.reset_index()

数据选取

[]

只能对行进 行(row/index) 切片,前闭后开df[0:3],df[:4],df[4:]

where 布尔查找

df[df["A"]>7]

isin

# 返回布尔值
s.isin([1,2,3])
df['A'].isin([1,2,3])
df.loc[df['A'].isin([5.8,5.1])]选取列A中值为5.8,5.1的所有行组成dataframe

query

多个where整合切片,&:于,|:或 

df.query(" A>5.0 & (B>3.5 | C<1.0) ") 

loc :根据名称Label切片

# df.loc[A,B] A是行范围,B是列范围
df.loc[1:4,['petal_length','petal_width']]

# 需求1:创建一个新的变量 test
# 如果sepal_length > 3 test = 1 否则 test = 0
df.loc[df['sepal_length'] > 6, 'test'] = 1
df.loc[df['sepal_length'] <=6, 'test'] = 0

# 需求2:创建一个新变量test2
# 1.petal_length>2 and petal_width>0.3 = 1
# 2.sepeal_length>6 and sepal_width>3 = 2 3.其他 = 0
df['test2'] = 0
df.loc[(df['petal_length']>2)&(df['petal_width']>0.3), 'test2'] = 1
df.loc[(df['sepal_length']>6)&(df['sepal_width']>3), 'test2'] = 2

iloc:切位置

df.iloc[1:4,:]

ix:混切

名称和位置混切,但效率低,少用

df1.ix[0:3,['sepal_length','petal_width']]

map与lambda

alist = [1,2,3,4]
map(lambda s : s+1, alist)#map就是将自定义函数应用于Series每个元素

df['sepal_length'].map(lambda s:s*2+1)[0:3]

apply和applymap

apply和applymap是对dataframe的操作,前者操作一行或者一列,后者操作每个元素

These are techniques to apply function to element, column or dataframe.

Map: It iterates over each element of a series.
df[‘column1'].map(lambda x: 10+x), this will add 10 to each element of column1.
df[‘column2'].map(lambda x: ‘AV'+x), this will concatenate “AV“ at the beginning of each element of column2 (column format is string).

Apply: As the name suggests, applies a function along any axis of the DataFrame.
df[[‘column1','column2']].apply(sum), it will returns the sum of all the values of column1 and column2.
df0[['data1']].apply(lambda s:s+1)

ApplyMap: 对dataframe的每一个元素施加一个函数
func = lambda x: x+2
df.applymap(func), dataframe每个元素加2 (所有列必须数字类型)

contains

# 使用DataFrame模糊筛选数据(类似SQL中的LIKE)
# 使用正则表达式进行模糊匹配,*匹配0或无限次,?匹配0或1次
df_obj[df_obj['套餐'].str.contains(r'.*?语音CDMA.*')] 

# 下面两句效果一致
df[df['商品名称'].str.contains("四件套")]
df[df['商品名称'].str.contains(r".*四件套.*")]

以上这篇pandas数据清洗,排序,索引设置,数据选取方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python Pandas中根据列的值选取多行数据

    Pandas中根据列的值选取多行数据 # 选取等于某些值的行记录 用 == df.loc[df['column_name'] == some_value] # 选取某列是否是某一类型的数值 用 isin df.loc[df['column_name'].isin(some_values)] # 多种条件的选取 用 & df.loc[(df['column'] == some_value) & df['other_column'].isin(some_values)] # 选取不等于某些值的

  • pandas.loc 选取指定列进行操作的实例

    今天发现用pandas里面的数据结构可以减少大量的编程工作,从现在开始逐渐积累,记录一下: 使用标签选取数据: df.loc[行标签,列标签] df.loc['a':'b']#选取ab两行数据 df.loc[:,'one']#选取one列的数据 df.loc的第一个参数是行标签,第二个参数为列标签(可选参数,默认为所有列标签),两个参数既可以是列表也可以是单个字符,如果两个参数都为列表则返回的是DataFrame,否则,则为Series. 示例代码: df.loc[ (df.Cabin.notn

  • pandas 选取行和列数据的方法详解

    前言 本文介绍在 pandas 中如何读取数据行列的方法.数据由行和列组成,在数据库中,一般行被称作记录 (record),列被称作字段 (field).回顾一下我们对记录和字段的获取方式:一般情况下,字段根据名称获取,记录根据筛选条件获取.比如获取 student_id 和 studnent_name 两个字段:记录筛选,比如 sales_amount 大于 10000 的所有记录.对于熟悉 SQL 语句的人来说,就是下面的语句: select student_id, student_name

  • python pandas.DataFrame选取、修改数据最好用.loc,.iloc,.ix实现

    相信很多人像我一样在学习python,pandas过程中对数据的选取和修改有很大的困惑(也许是深受Matlab)的影响... 到今天终于完全搞清楚了!!! 先手工生出一个数据框吧 import numpy as np import pandas as pd df = pd.DataFrame(np.arange(0,60,2).reshape(10,3),columns=list('abc')) df 是这样子滴 那么这三种选取数据的方式该怎么选择呢? 一.当每列已有column name时,用

  • 基于pandas数据样本行列选取的方法

    注:以下代码是基于python3.5.0编写的 import pandas food_info = pandas.read_csv("food_info.csv") # ------------------选取数据样本的第一行-------------------- print(food_info.loc[0]) #------------------选取数据样本的3到6行---------------------- print(food_info.loc[3:6]) #-------

  • 用pandas中的DataFrame时选取行或列的方法

    如下所示: import numpy as np import pandas as pd from pandas import Sereis, DataFrame ser = Series(np.arange(3.)) data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz')) data['w'] #选择表格中的'w'列,使用类字典属性,返回的是Series类型 data.w #选择表格

  • pandas数据清洗,排序,索引设置,数据选取方法

    此教程适合有pandas基础的童鞋来看,很多知识点会一笔带过,不做详细解释 Pandas数据格式 Series DataFrame:每个column就是一个Series 基础属性shape,index,columns,values,dtypes,describe(),head(),tail() 统计属性Series: count(),value_counts(),前者是统计总数,后者统计各自value的总数 df.isnull() df的空值为True df.notnull() df的非空值为T

  • pandas表连接 索引上的合并方法

    如下所示: left1 = pd.DataFrame({'key':['a','b','a','a','b','c'],'value':range(6)}) right1 = pd.DataFrame({'group_val':[3.5,7]},index = ['a','b']) print(left1) print(right1) result = pd.merge(left1,right1,left_on='key',right_index=True) print(result) 层次化数

  • java8新特性将List中按指定属性排序过滤重复数据的方法

    在java中常常会遇到这样一个问题,在实际应用中,总会碰到对List排序并过滤重复的问题,如果List中放的只是简单的String类型过滤so easy,但是实际应用中并不会这么easy,往往List中放的是一个类,类中有多个属性,要过滤重复数据,而且这个重复数据要按自己指定的属性过滤,但是要想按照其它属性排序顺序过滤,所以要先排序一下,然后按照某个属性过滤. 实体类如下所示,大家只要创建下面的实体类,无需继承父类,大家不会注解式风格的话,请自行加上getter/setter方法. 首先看看gr

  • Python pandas删除指定行/列数据的方法实例

    目录 1.滤除缺失数据dropna() 1)滤除含有NaN值的所有行 2)滤除含有NaN值的所有列 3)滤除元素都是NaN值的行 4)滤除元素都是NaN值的列 5)滤除指定列中含有缺失的行 2.删除重复值 drop_duplicates() 1)keep=“first” 2)keep=“last” 3)keep=False 4)删除指定列中重复项对应的行 3.根据指定条件删除行列drop() 1).删除指定列 2).删除指定行 总结 1.滤除缺失数据dropna() import pandas

  • Pandas之Fillna填充缺失数据的方法

    约定: import pandas as pd import numpy as np from numpy import nan as NaN 填充缺失数据 fillna()是最主要的处理方式了. df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]]) df1 代码结果: 0 1 2 0 1.0 2.0 3.0 1 NaN NaN 2.0 2 NaN NaN NaN 3 8.0 8.0 NaN 用常数填充: df1.fill

  • pandas数据选取:df[] df.loc[] df.iloc[] df.ix[] df.at[] df.iat[]

    1 引言 Pandas是作为Python数据分析著名的工具包,提供了多种数据选取的方法,方便实用.本文主要介绍Pandas的几种数据选取的方法. Pandas中,数据主要保存为Dataframe和Series是数据结构,这两种数据结构数据选取的方式基本一致,本文主要以Dataframe为例进行介绍. 在Dataframe中选取数据大抵包括3中情况: 1)行(列)选取(单维度选取):df[].这种情况一次只能选取行或者列,即一次选取中,只能为行或者列设置筛选条件(只能为一个维度设置筛选条件). 2

  • Python pandas索引的设置和修改方法

    目录 前言 创建索引 pd.Index pd.IntervalIndex pd.CategoricalIndex pd.DatetimeIndex pd.PeriodIndex pd.TimedeltaIndex 读取数据 set_index reset_index set_axis 操作行索引 操作列索引 rename 字典形式 函数形式 使用案例 按日统计总消费 按日.性别统计小费均值,消费总和 笨方法 总结 前言 本文主要是介绍Pandas中行和列索引的4个函数操作: set_index

  • pandas.dataframe按行索引表达式选取方法

    需要把一个从csv文件里读取来的数据集等距抽样分割,这里用到了列表表达式和dataframe.iloc 先生成索引列表: index_list = ['%d' %i for i in range(df.shape[0]) if i % 3 == 0] 在dataframe中选取 sample_df = df.iloc[index_list] 合起来 sample_df = df.iloc[['%d' %i for i in range(df.shape[0]) if i % 3 == 0]] 各

  • python Pandas之DataFrame索引及选取数据

    目录 1.索引是什么 1.1 认识索引 1.2 自定义索引 2. 索引的简单使用 2.1 列索引 2.2 行索引 2.2.1 使用[ ] 2.2.2 使用.loc()和.iloc() 1.索引是什么 1.1 认识索引 先创建一个简单的DataFrame. myList = [['a', 10, 1.1], ['b', 20, 2.2], ['c', 30, 3.3], ['d', 40, 4.4]] df1 = pd.DataFrame(data = myList) print(df1) ---

  • 浅谈pandas用groupby后对层级索引levels的处理方法

    层及索引levels,刚开始学习pandas的时候没有太多的操作关于groupby,仅仅是简单的count.sum.size等等,没有更深入的利用groupby后的数据进行处理.近来数据处理的时候有遇到这类问题花了一点时间,所以这里记录以及复习一下:(以下皆是个人实践后的理解) 我使用一个实例来讲解下面的问题:一张数据表中有三列(动物物种.物种品种.品种价格),选出每个物种从大到小品种的前两种,最后只需要品种和价格这两列. 以上这张表是我们后面需要处理的数据表 (物种 品种 价格) levels

随机推荐