协程Python 中实现多任务耗资源最小的方式

协程,又称微线程,纤程。英文名 Coroutine。

协程是 Python 中另外一种实现多任务的方式,只不过比线程更小,占用更小执行单元(理解为需要的资源)。

为啥说它是一个执行单元,因为它自带 CPU 上下文。这样只要在合适的时机, 我们可以把一个协程 切换到另一个协程。 只要这个过程中保存或恢复 CPU上下文那么程序还是可以运行的。

通俗的理解:在一个线程中的某个函数,可以在任何地方保存当前函数的一些临时变量等信息,然后切换到另外一个函数中执行,注意不是通过调用函数的方式做到的,并且切换的次数以及什么时候再切换到原来的函数都由开发者自己确定。

协程和线程差异

在实现多任务时, 线程切换从系统层面远不止保存和恢复 CPU上下文这么简单。

操作系统为了程序运行的高效性每个线程都有自己缓存 Cache 等等数据,操作系统还会帮你做这些数据的恢复操作,所以线程的切换非常耗性能。

但是协程的切换只是单纯的操作 CPU 的上下文,所以一秒钟切换个上百万次系统都抗得住。

之前我们讲过 yield 关键字,现在就用它来实现多任务。

例子:

import time

def task_1():
  while True:
    print("--1--")
    time.sleep(0.5)
    yield

def task_2():
  while True:
    print("--2--")
    time.sleep(0.5)
    yield

def main():
  t1 = task_1()
  t2 = task_2()
  while True:
    next(t1)
    next(t2)

if __name__ == "__main__":
  main()

运行过程:

先让 t1 运行一会,当 t1 遇到 yield 的时候,再返回到 main() 循环的地方,然后执行 t2 , 当它遇到 yield 的时候,再次切换到 t1 中,这样 t1 和 t2 就交替运行,最终实现了多任务,协程。

运行结果:

greenlet

为了更好使用协程来完成多任务,Python 中的 greenlet 模块对其封装,从而使得切换任务变的更加简单。

首先你要安装一下 greenlet 模块。

pip3 install greenlet
from greenlet import greenlet
import time

def test1():
  while True:
    print("---A--")
    gr2.switch()
    time.sleep(0.5)

def test2():
  while True:
    print("---B--")
    gr1.switch()
    time.sleep(0.5)

gr1 = greenlet(test1)
gr2 = greenlet(test2)

# 切换到gr1中运行
gr1.switch()

运行结果:

和我们之前用 yield 实现的效果基本一样,greenlet 其实是对 yield 进行了简单的封装。

greenlet 实现多任务要比 yield 更简单,但是我们以后还是不用它。

上面例子中的延时是0.5秒,如果延迟是100秒,那么程序就会卡住100秒,就算有其他需要执行的任务,系统也不会切换过去,这100秒的时间是无法利用的。

这个问题下面来解决。

gevent

greenlet 已经实现了协程,但是还是得进行人工切换,是不是觉得太麻烦了。

Python 还有一个比 greenlet 更强大的并且能够自动切换任务的模块 gevent。

gevent 是对 greenlet 的再次封装。

其原理是当一个 greenlet 遇到 IO(指的是input output 输入输出,比如网络、文件操作等)操作时,比如访问网络,就自动切换到其他的 greenlet,等到 IO 操作完成,再在适当的时候切换回来继续执行。

由于 IO 操作非常耗时,经常使程序处于等待状态,有了gevent 为我们自动切换协程,就保证总有 greenlet 在运行,而不是等待 IO。

首先还是得先安装 gevent。

pip3 install gevent

例子:

import gevent

def f(n):
  for i in range(n):
    print(gevent.getcurrent(), i)

g1 = gevent.spawn(f, 3)
g2 = gevent.spawn(f, 3)
g3 = gevent.spawn(f, 3)
g1.join()
g2.join()
g3.join()

运行结果:

<Greenlet at 0x35aae40: f(3)> 0
<Greenlet at 0x35aae40: f(3)> 1
<Greenlet at 0x35aae40: f(3)> 2
<Greenlet at 0x374a780: f(3)> 0
<Greenlet at 0x374a780: f(3)> 1
<Greenlet at 0x374a780: f(3)> 2
<Greenlet at 0x374a810: f(3)> 0
<Greenlet at 0x374a810: f(3)> 1
<Greenlet at 0x374a810: f(3)> 2

可以看到,3个 greenlet 是依次运行而不是交替运行。

这还无法判断 gevent 是否实现了多任务的效果,最好的判断情况是在运行结果中 0 1 2 不按顺序出现。

在 gevent 的概念中,我们提到 gevent 在遇到延时的时候会自动切换任务。

那么,我们先给上面的例子添加延时,再看效果。

import gevent
import time

def f(n):
  for i in range(n):
    print(gevent.getcurrent(), i)
    time.sleep(0.5)

g1 = gevent.spawn(f, 3)
g2 = gevent.spawn(f, 3)
g3 = gevent.spawn(f, 3)
g1.join()
g2.join()
g3.join()

运行结果:

<Greenlet at 0x36aae40: f(3)> 0
<Greenlet at 0x36aae40: f(3)> 1
<Greenlet at 0x36aae40: f(3)> 2
<Greenlet at 0x384a780: f(3)> 0
<Greenlet at 0x384a780: f(3)> 1
<Greenlet at 0x384a780: f(3)> 2
<Greenlet at 0x384a810: f(3)> 0
<Greenlet at 0x384a810: f(3)> 1
<Greenlet at 0x384a810: f(3)> 2

在添加了延时之后,运行结果并没有改变。

其实,gevent 要的不是 time.sleep() 的延时,而是 gevent.sleep() 的延时。

import gevent

def f(n):
  for i in range(n):
    print(gevent.getcurrent(), i)
    gevent.sleep(0.5)

g1 = gevent.spawn(f, 3)
g2 = gevent.spawn(f, 3)
g3 = gevent.spawn(f, 3)
g1.join()
g2.join()
g3.join()

join 还有一种更简单的写法。

import time
import gevent

def f(n):
  for i in range(n):
    print(gevent.getcurrent(), i)
    gevent.sleep(0.5)

gevent.joinall([
  gevent.spawn(f, 3),
  gevent.spawn(f, 3),
  gevent.spawn(f, 3)
])

一般都是后面的这种写法。

运行结果:

<Greenlet at 0x2e5ae40: f(3)> 0
<Greenlet at 0x2ffa780: f(3)> 0
<Greenlet at 0x2ffa810: f(3)> 0
<Greenlet at 0x2e5ae40: f(3)> 1
<Greenlet at 0x2ffa780: f(3)> 1
<Greenlet at 0x2ffa810: f(3)> 1
<Greenlet at 0x2e5ae40: f(3)> 2
<Greenlet at 0x2ffa780: f(3)> 2
<Greenlet at 0x2ffa810: f(3)> 2

这下终于实现多任务的效果了, gevent 在遇到延时的时候,就自动切换到其他任务。

这里是将 time 中的 sleep 换成了 gevent 中的 sleep。

那如果有网络程序,网络程序中也有许多堵塞,比如 connect, recv,accept,需要不需要换成 gevent 中的对应方法。

理论上来说,是要换的。如果想用 gevent,那么就要把所有的延时操作,堵塞这一类的函数,统统换成 gevent 中的对应方法。

那有个问题,万一我的代码已经写了10万行了,这换起来怎么破......

有什么办法不需要手动修改么,有,打个补丁即可。

import time
import gevent
from gevent import monkey

# 有耗时操作时需要
# 将程序中用到的耗时操作的代码,换为gevent中自己实现的模块
monkey.patch_all() 

def f(n):
  for i in range(n):
    print(gevent.getcurrent(), i)
    time.sleep(0.5)

g1 = gevent.spawn(f, 3)
g2 = gevent.spawn(f, 3)
g3 = gevent.spawn(f, 3)
g1.join()
g2.join()
g3.join()

monkey.patch_all() 会自动去检查代码,将所有会产生延时堵塞的方法,都自动换成 gevent 中的方法。

运行结果:

<Greenlet at 0x3dd91e0: f(3)> 0
<Greenlet at 0x3dd9810: f(3)> 0
<Greenlet at 0x3dd99c0: f(3)> 0
<Greenlet at 0x3dd91e0: f(3)> 1
<Greenlet at 0x3dd9810: f(3)> 1
<Greenlet at 0x3dd99c0: f(3)> 1
<Greenlet at 0x3dd91e0: f(3)> 2
<Greenlet at 0x3dd9810: f(3)> 2
<Greenlet at 0x3dd99c0: f(3)> 2

总结:

通过利用延时的时间去做其他任务,把时间都利用起来,这就是协程最大的意义。

到此这篇关于协程Python 中实现多任务耗资源最小的方式的文章就介绍到这了,更多相关Python多任务耗资源最小方式内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python实现简单的多任务mysql转xml的方法

    本文实例讲述了Python实现简单的多任务mysql转xml的方法.分享给大家供大家参考,具体如下: 为了需求导出的格式尽量和navicat导出的xml一致. 用的gevent,文件i/o操作会阻塞,所以并不会完全异步. 1. mysql2xml.py: # -*- coding: utf-8 -*- ''' Created on 2014/12/27 @author: Yoki ''' import gevent import pymysql from pymysql.cursors impo

  • python多任务之协程的使用详解

    1|0使用yield完成多任务 import time def test1(): while True: print("--1--") time.sleep(0.5) yield None def test2(): while True: print("--2--") time.sleep(0.5) yield None if __name__ == "__main__": t1 = test1() t2 = test2() while True

  • python实现的多任务版udp聊天器功能案例

    本文实例讲述了python实现的多任务版udp聊天器.分享给大家供大家参考,具体如下: 说明 编写一个有2个线程的程序 线程1用来接收数据然后显示 线程2用来检测键盘数据然后通过udp发送数据 要求 实现上述要求 总结多任务程序的特点 参考代码: import socket import threading def send_msg(udp_socket): """获取键盘数据,并将其发送给对方""" while True: # 1. 从键盘输入

  • python多线程案例之多任务copy文件完整实例

    本文实例讲述了python多线程案例之多任务copy文件.分享给大家供大家参考,具体如下: import os import multiprocessing def copy_file(q,file_name, old_folder_name, new_folder_name): """完成文件的复制""" old_f = open(old_folder_name+"/"+file_name, "rb")

  • python多任务及返回值的处理方法

    废话不多说,直接上代码! # coding:utf-8 from multiprocessing import Pool import time def keywords(title, content, top_n=5): print u'关键词提取...' print title, content, top_n time.sleep(3) return 0, [u"晴", u"多云"] def category(title, content): print u'文

  • 协程Python 中实现多任务耗资源最小的方式

    协程,又称微线程,纤程.英文名 Coroutine. 协程是 Python 中另外一种实现多任务的方式,只不过比线程更小,占用更小执行单元(理解为需要的资源). 为啥说它是一个执行单元,因为它自带 CPU 上下文.这样只要在合适的时机, 我们可以把一个协程 切换到另一个协程. 只要这个过程中保存或恢复 CPU上下文那么程序还是可以运行的. 通俗的理解:在一个线程中的某个函数,可以在任何地方保存当前函数的一些临时变量等信息,然后切换到另外一个函数中执行,注意不是通过调用函数的方式做到的,并且切换的

  • python中使用input()函数获取用户输入值方式

    我们编写程序最终目的还是来解决实际问题,所以必然会遇到输入输出的交互问题,python中提供了input函数用来获取用户的输入,我们可以用以下程序演示. user_gender = input("Please enter your gender(F/M):") print(f'Your gender is {user_gender}') 要注意的是在sublime编辑器中不支持input的在线输入,所以我们需要去cmd窗口运行这个程序,结果如下所示: 要注意的是input的返回值是字符

  • python中requests模拟登录的三种方式(携带cookie/session进行请求网站)

    一,cookie和session的区别 cookie在客户的浏览器上,session存在服务器上 cookie是不安全的,且有失效时间 session是在cookie的基础上,服务端设置session时会向浏览器发送设置一个设置cookie的请求,这个cookie包括session的id当访问服务端时带上这个session_id就可以获取到用户保存在服务端对应的session 二,爬虫处理cookie和session 带上cookie和session的好处: 能够请求到登录后的界面 带上cook

  • Python中4种实现数值的交换方式

    目录 1.使用临时变量 2.使用tuple元组 3.使用 加减法 或 乘除法 4.使用异或运算 1.使用临时变量 该方法是最简单的,也是最容易理解的,适用于所有编程语言,其实现过程如下: tmp = a a = b b = tmp 2.使用tuple元组 该方法是Python下特有的方法,并且只需要一行代码即可实现,其使用到了元组(tuple),其大致原理如下: 右边的 b, a 会构成一个由 b 和 a 组成的元组对元组进行拆包,然后再分别赋值给到左边的 a, b a, b = b, a 我们

  • 一文详解Python中实现单例模式的几种常见方式

    目录 Python 中实现单例模式的几种常见方式 元类(Metaclass): 装饰器(Decorator): 模块(Module): new 方法: Python 中实现单例模式的几种常见方式 元类(Metaclass): class SingletonType(type): """ 单例元类.用于将普通类转换为单例类. """ _instances = {} # 存储单例实例的字典 def __call__(cls, *args, **kwa

  • Python中的 enum 模块源码详析

    起步 上一篇 <Python 的枚举类型> 文末说有机会的话可以看看它的源码.那就来读一读,看看枚举的几个重要的特性是如何实现的. 要想阅读这部分,需要对元类编程有所了解. 成员名不允许重复 这部分我的第一个想法是去控制 __dict__ 中的 key .但这样的方式并不好,__dict__ 范围大,它包含该类的所有属性和方法.而不单单是枚举的命名空间.我在源码中发现 enum 使用另一个方法.通过 __prepare__ 魔术方法可以返回一个类字典实例,在该实例 使用 __prepare__

  • python中的多进程的创建与启动方式

    目录 一.多进程的创建:多进程的创建方法有两种: 1.通过Process创建多进程 Process语法结构: 2.通过进程池创建并启动多进程 3.通过继承的方法创建多进程 4.进程创建与启动完整代码 python中的并发有三种形式,多进程.多线程.协程.执⾏并发任务的⽬的是为了提⾼程序运⾏的效率. 一.多进程的创建:多进程的创建方法有两种: 1.通过Process创建多进程 Process语法结构: Process(group, target, name, args, kwargs) group

  • Python中的heapq模块源码详析

    起步 这是一个相当实用的内置模块,但是很多人竟然不知道他的存在--笔者也是今天偶然看到的,哎--尽管如此,还是改变不了这个模块好用的事实 heapq 模块实现了适用于Python列表的最小堆排序算法. 堆是一个树状的数据结构,其中的子节点都与父母排序顺序关系.因为堆排序中的树是满二叉树,因此可以用列表来表示树的结构,使得元素 N 的子元素位于 2N + 1 和 2N + 2 的位置(对于从零开始的索引). 本文内容将分为三个部分,第一个部分简单介绍 heapq 模块的使用:第二部分回顾堆排序算法

  • python中常见进制之间的转换方式

    目录 1. 很多情况下需要进行不同进制之间的转换 下面的表格反应了常见进制之间的转换 2. 第二种是使用format函数进行转换 3. 手动转化 10进制转换为其他进制代码 其他的进制转为10进制代码 1. 很多情况下需要进行不同进制之间的转换 其中比较常用到的是python的内置函数进行进制的转换,一般使用内置函数进行转换的时候是先将控制台输入的字符串或者是自定义的字符串先转换为10进制然后将10进制转换为其他的进制,常见的是二进制.十进制.八进制.十六进制之间的转换,其中遵循一个原则是: 其

  • python进阶之协程你了解吗

    目录 协程的定义 协程和线程差异 协程的标准 协程的优点 协程的缺点 python中实现协程的方式 async&await关键字 事件循环 协程函数和协程对象 await Task对象 asyncio.Future对象 futures.Future对象 异步迭代器 什么是异步迭代器? 什么是异步可迭代对象? 异步上下文管理器 uvloop 异步redis 异步MySQL 爬虫 总结 协程的定义 协程(Coroutine),又称微线程,纤程.(协程是一种用户态的轻量级线程) 作用:在执行 A 函数

随机推荐