python 基于opencv 绘制图像轮廓

图像轮廓概念

轮廓是一系列相连的点组成的曲线,代表了物体的基本外形。
谈起轮廓不免想到边缘,它们确实很像。简单的说,轮廓是连续的,边缘并不全都连续(下图)。其实边缘主要是作为图像的特征使用,比如可以用边缘特征可以区分脸和手;而轮廓主要用来分析物体的形态,比如物体的周长和面积等,可以说边缘包括轮廓。

寻找轮廓的操作一般用于二值图像,所以通常会使用阈值分割或Canny边缘检测先得到二值图。

注意:寻找轮廓是针对白色物体的,一定要保证物体是白色,而背景是黑色,不然很多人在寻找轮廓时会找到图片最外面的一个框。

opencv找出图像轮廓

使用cv.findContours()寻找轮廓:

import cv2 as cv
import numpy as np

img = cv.imread('j.png')
img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
ret, thresh = cv.threshold(img_gray, 0, 255, cv.THRESH_BINARY_INV + cv.THRESH_OTSU)

# 寻找二值图像的轮廓
contours, hierarchy = cv.findContours(
  thresh, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)

print(len(contours))
  • 参数2:轮廓的查找方式,一般使用cv.RETR_TREE,表示提取所有的轮廓并建立轮廓间的层级。
  • 参数3:轮廓的近似方法。比如对于一条直线,我们可以存储该直线的所有像素点,也可以只存储起点和终点。使用cv.CHAIN_APPROX_SIMPLE就表示用尽可能少的像素点表示轮廓。
  • 简便起见,这两个参数也可以直接用真值3和2表示。
  • 函数有2个返回值,hierarchy是轮廓间的层级关系,这个不用理会。我们主要看contours,它就是找到的轮廓了,以链表形式存储,记录了每条轮廓的所有像素点的坐标(x,y)。

opencv绘制图像轮廓

轮廓找出来后,可以像图中那样用红色画出来:cv.drawContours()

cv.drawContours(img, contours, -1, (0, 0, 255), 2)
其中参数2就是得到的contours,参数3表示要绘制哪一条轮廓,-1表示绘制所有轮廓,参数4是颜色(B/G/R通道,所以(0,0,255)表示红色),参数5是线宽。

经验之谈:很多人画图时明明用了彩色,但没有效果,请检查你是在哪个图上画,画在灰度图和二值图上显然是没有彩色的。

一般情况下,我们会首先获得要操作的轮廓,再进行轮廓绘制及分析:
cnt = contours[1]
cv.drawContours(img, [cnt], 0, (0, 0, 255), 2)

实验:找出并绘制图像轮廓

import cv2 as cv
import numpy as np

img = cv.imread('jiao.jpg')
img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
ret, thresh = cv.threshold(img_gray, 0, 255, cv.THRESH_BINARY_INV + cv.THRESH_OTSU)

# 寻找二值图像的轮廓
contours, hierarchy = cv.findContours(
  thresh, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
cnt = contours[1:6]

cv.drawContours(img, cnt, -1, (0, 0, 255), 2)

cv.imshow('result',img)
cv.waitKey(0)
cv.destroyAllWindows()

实验结果

以上就是python 基于opencv 绘制图像轮廓的详细内容,更多关于python 绘制图像轮廓的资料请关注我们其它相关文章!

(0)

相关推荐

  • python opencv图像处理(素描、怀旧、光照、流年、滤镜 原理及实现)

    图像素描特效 图像素描特效主要经过以下几个步骤: 调用cv.cvtColor()函数将彩色图像灰度化处理: 通过cv.GaussianBlur()函数实现高斯滤波降噪: 边缘检测采用Canny算子实现: 最后通过cv.threshold()反二进制阈值化处理实现素描特效. #coding:utf-8 import cv2 as cv import numpy as np #读取原始图像 img = cv.imread('d:/paojie.png') #图像灰度处理 gray = cv.cvtC

  • python-opencv获取二值图像轮廓及中心点坐标的代码

    python-opencv获取二值图像轮廓及中心点坐标代码: groundtruth = cv2.imread(groundtruth_path)[:, :, 0] h1, w1 = groundtruth.shape contours, cnt = cv2.findContours(groundtruth.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if len(contours) != 1:#轮廓总数 continue M = cv

  • Python+OpenCV图像处理——实现直线检测

    简介: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法.主要用来从图像中分离出具有某种相同特征的几何形状(如,直线,圆等).最基本的霍夫变换是从黑白图像中检测直线(线段). 2.Hough变换的原理是将特定图形上的点变换到一组参数空间上,根据参数空间点的累计结果找到一个极大值对应的解,那么这个解就对应着要寻找的几何形状的参数(比如说直线,那么就会得到直线的斜率k与常熟b,圆就会得到圆心与半径等等) 3.霍夫线变

  • Python OpenCV中的numpy与图像类型转换操作

    Python OpenCV存储图像使用的是Numpy存储,所以可以将Numpy当做图像类型操作,操作之前还需进行类型转换,转换到int8类型 import cv2 import numpy as np # 使用numpy方式创建一个二维数组 img = np.ones((100,100)) # 转换成int8类型 img = np.int8(img) # 颜色空间转换,单通道转换成多通道, 可选可不选 img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) cv2

  • Python Opencv实现图像轮廓识别功能

    本文实例为大家分享了python opencv识别图像轮廓的具体代码,供大家参考,具体内容如下 要求:用矩形或者圆形框住图片中的云朵(不要求全部框出) 轮廓检测 Opencv-Python接口中使用cv2.findContours()函数来查找检测物体的轮廓. import cv2 img = cv2.imread('cloud.jpg') # 灰度图像 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 二值化 ret, binary = cv2.th

  • opencv python 图像轮廓/检测轮廓/绘制轮廓的方法

    图像的轮廓检测,如计算多边形外界.形状毕竟.计算感兴趣区域等. Contours : Getting Started 轮廓 简单地解释为连接所有连续点(沿着边界)的曲线,具有相同的颜色或强度. 轮廓是形状分析和物体检测和识别的有用工具 NOTE 为获得更好的准确性,请使用二值图,在找到轮廓之前,应用阈值法或canny边缘检测 从OpenCV 3.2开始,findContours()不再修改源图像,而是将修改后的图像作为三个返回参数中的第一个返回 在OpenCV中,查找轮廓是从黑色背景中查找白色对

  • Python+OpenCV图像处理——实现轮廓发现

    简介:轮廓发现是基于图像边缘提取的基础寻找对象轮廓的方法,所以边缘提取的阈值选定会影响最终轮廓发现结果. 代码如下: import cv2 as cv import numpy as np def contours_demo(image): dst = cv.GaussianBlur(image, (3, 3), 0) #高斯模糊去噪 gray = cv.cvtColor(dst, cv.COLOR_RGB2GRAY) ret, binary = cv.threshold(gray, 0, 25

  • Python+OpenCV图像处理——打印图片属性、设置存储路径、调用摄像头

    一. 打印图片属性.设置图片存储路径 代码如下: #打印图片的属性.保存图片位置 import cv2 as cv import numpy as np #numpy是一个开源的Python科学计算库 def get_image_info(image): print(type(image)) #type() 函数如果只有第一个参数则返回对象的类型 在这里函数显示图片类型为 numpy类型的数组 print(image.shape) #图像矩阵的shape属性表示图像的大小,shape会返回tup

  • Python+OpenCV图像处理—— 色彩空间转换

    一.色彩空间的转换 代码如下: #色彩空间转换 import cv2 as cv def color_space_demo(img): gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) #RGB转换为GRAY 这里的GRAY是单通道的 cv.imshow("gray", gray) hsv = cv.cvtColor(img, cv.COLOR_BGR2HSV) #RGB转换为HSV cv.imshow("hsv", hsv) y

  • Python+OpenCV图像处理——图像二值化的实现

    简介:图像二值化就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程. 普通图像二值化 代码如下: import cv2 as cv import numpy as np #全局阈值 def threshold_demo(image): gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY) #把输入图像灰度化 #直接阈值化是对输入的单通道矩阵逐像素进行阈值分割. ret, binary = cv.threshold(gray

随机推荐