单机redis分布式锁实现原理解析

最近我们有个服务经常出现存储的数据出现重复,首先上一个系统流程图:

用户通过http请求可以通知任务中心结束掉自己发送的任务,这时候任务中心会通过MQ通知结束服务去结束任务保存数据,由于任务结束数据计算保存有一定延时,所以存在用户短时间内多次结束同一个任务,这时候就会导致我们结束服务对同一个任务保存多次数据。恰好我们也是用了redis,所以对于这个问题我当时想到使用分布式锁来解决,那么如何用redis实现分布式锁呢?

首先要明确一个分布式锁应具备的原则:

互斥性。在任意时刻,只有一个客户端能持有锁;不会发生死锁。即使一个客户端持有锁的期间崩溃而没有主动释放锁,也需要保证后续其他客户端能够加锁成功;加锁和解锁必须是同一个客户端;有高可用的获取锁和释放锁功能。

由于我们只使用了单机的redis,所以本文的实现不具备第四点原则。

我们这个锁的实现就包括两点:加锁、解锁。首先看加锁。先上代码:

public boolean tryGetDistributedLock(String lockKey, String requestId, int expireTime) throws Exception{
    Jedis jedis = null;
    try {
      jedis = getJedisClient();
      String result = jedis.set(lockKey, requestId, SET_IF_NOT_EXIST, SET_WITH_EXPIRE_TIME, expireTime);
      if (LOCK_SUCCESS.equals(result)) {
        return true;
      }
      return false;
    } finally {
      returnResource(jedis);
    }
 }

我们的加锁就是设置一个键值对,并且满足以下条件:

确保只有当键不存在时才设置有效;设置的值必须是当前客户端生成的uuid;键必须要有过期时间。

这三点条件就可以满足上述的原则1、原则2。

接下来看下解锁,代码如下:

public boolean releaseDistributedLock(String lockKey, String requestId) throws Exception{
    Jedis jedis = null;
    try {
      jedis = getJedisClient();
      String script = "if redis.call('get', KEYS[1]) == ARGV[1] then return redis.call('del', KEYS[1]) else return 0 end";
      Object result = jedis.eval(script, Collections.singletonList(lockKey), Collections.singletonList(requestId));
      if (RELEASE_SUCCESS.equals(result)) {
        return true;
      }
      return false;
    }finally {
      returnResource(jedis);
    }
}

解锁是通过一段lua脚本实现,逻辑如下:

1、获取锁键值看是否与当初设置的值一致;

2、如果一致则删除键。

由于解锁过程分为两步,为了确保原子性所以通过让redis执行lua脚本来实现,校验键值可以确保加锁解锁都是同一个客户端。

这样一个简易的分布式锁就实现完毕了,当然在本文开头就说了,这个实现只能满足单机redis的情况,对于redis集群其实是不严谨的,对于redis集群有一个redlock方案,我也在研究中,后面也会总结一下。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 浅谈Redis分布式锁的正确实现方式

    前言 分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介绍Redis分布式锁实现的博客,然而他们的实现却有着各种各样的问题,为了避免误人子弟,本篇博客将详细介绍如何正确地实现Redis分布式锁. 可靠性 首先,为了确保分布式锁可用,我们至少要确保锁的实现同时满足以下四个条件: 1.互斥性.在任意时刻,只有一个客户端能持有锁. 2.不会发生死锁.即使有一个

  • SpringBoot集成Redisson实现分布式锁的方法示例

    上篇 <SpringBoot 集成 redis 分布式锁优化>对死锁的问题进行了优化,今天介绍的是 redis 官方推荐使用的 Redisson ,Redisson 架设在 redis 基础上的 Java 驻内存数据网格(In-Memory Data Grid),基于NIO的 Netty 框架上,利用了 redis 键值数据库.功能非常强大,解决了很多分布式架构中的问题. Github的wiki地址: https://github.com/redisson/redisson/wiki 官方文档

  • Java Redis分布式锁的正确实现方式详解

    前言 分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介绍Redis分布式锁实现的博客,然而他们的实现却有着各种各样的问题,为了避免误人子弟,本篇博客将详细介绍如何正确地实现Redis分布式锁. 可靠性 首先,为了确保分布式锁可用,我们至少要确保锁的实现同时满足以下四个条件: 互斥性.在任意时刻,只有一个客户端能持有锁. 不会发生死锁.即使有一个客户端在

  • redis分布式锁的问题与解决方法

    分布式锁 在分布式环境中,为了保证业务数据的正常访问,防止出现重复请求的问题,会使用分布式锁来阻拦后续请求.我们先写一段有问题的业务代码: public void doSomething(String userId){ User user=getUser(userId); if(user==null){ user.setUserName("xxxxx"); user.setUserId(userId); insert(user); return; } update(user); } 上

  • SpringBoot使用Redisson实现分布式锁(秒杀系统)

    前面讲完了Redis的分布式锁的实现,接下来讲Redisson的分布式锁的实现,一般提及到Redis的分布式锁我们更多的使用的是Redisson的分布式锁,Redis的官方也是建议我们这样去做的.Redisson点我可以直接跳转到Redisson的官方文档. 1.1.引入Maven依赖 <dependency> <groupId>org.redisson</groupId> <artifactId>redisson-spring-boot-starter&l

  • Redis分布式锁的实现方式(redis面试题)

    什么是分布式锁? 要介绍分布式锁,首先要提到与分布式锁相对应的是线程锁.进程锁. 线程锁:主要用来给方法.代码块加锁.当某个方法或代码使用锁,在同一时刻仅有一个线程执行该方法或该代码段.线程锁只在同一JVM中有效果,因为线程锁的实现在根本上是依靠线程之间共享内存实现的,比如synchronized是共享对象头,显示锁Lock是共享某个变量(state). 进程锁:为了控制同一操作系统中多个进程访问某个共享资源,因为进程具有独立性,各个进程无法访问其他进程的资源,因此无法通过synchronize

  • Redis实现分布式锁和等待序列的方法示例

    在集群下,经常会因为同时处理发生资源争抢和并发问题,但是我们都知道同步锁 synchronized . cas . ReentrankLock 这些锁的作用范围都是 JVM ,说白了在集群下没啥用.这时我们就需要能在多台 JVM 之间决定执行顺序的锁了,现在分布式锁主要有 redis . Zookeeper 实现的,还有数据库的方式,不过性能太差,也就是需要一个第三方的监管. 背景 最近在做一个消费 Kafka 消息的时候发现,由于线上的消费者过多,经常会遇到,多个机器同时处理一个主键类型的数据

  • Redis分布式锁的正确实现方法总结

    分布式锁一般有三种实现方式: 1.数据库乐观锁: 2.基于Redis的分布式锁: 3.基于ZooKeeper的分布式锁. 本文将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介绍Redis分布式锁实现的博客,然而他们的实现却有着各种各样的问题,为了避免误人子弟,本篇博客将详细介绍如何正确地实现Redis分布式锁. 可靠性 首先,为了确保分布式锁可用,我们至少要确保锁的实现同时满足以下四个条件: 1.互斥性.在任意时刻,只有一个客户端能持有锁. 2.不会发生死锁.即使有一个客户端在

  • 单机redis分布式锁实现原理解析

    最近我们有个服务经常出现存储的数据出现重复,首先上一个系统流程图: 用户通过http请求可以通知任务中心结束掉自己发送的任务,这时候任务中心会通过MQ通知结束服务去结束任务保存数据,由于任务结束数据计算保存有一定延时,所以存在用户短时间内多次结束同一个任务,这时候就会导致我们结束服务对同一个任务保存多次数据.恰好我们也是用了redis,所以对于这个问题我当时想到使用分布式锁来解决,那么如何用redis实现分布式锁呢? 首先要明确一个分布式锁应具备的原则: 互斥性.在任意时刻,只有一个客户端能持有

  • php redis setnx分布式锁简单原理解析

    我就废话不多说了,大家还是直接看代码吧~ <?php //高并发分布式锁 header("Content-type:text/html;charset=utf-8"); $redis = new Redis(); $redis->connect('127.0.0.1', 6379); echo "Connection to server sucessfully"; //echo $redis->get("name");exit;

  • 详解Redis分布式锁的原理与实现

    目录 前言 使用场景 为什么要使用分布式锁 如何使用分布式锁 流程图 分布式锁的状态 分布式锁的特点 分布式锁的实现方式(以redis分布式锁实现为例) 总结 前言 在单体应用中,如果我们对共享数据不进行加锁操作,会出现数据一致性问题,我们的解决办法通常是加锁.在分布式架构中,我们同样会遇到数据共享操作问题,此时,我们就需要分布式锁来解决问题,下面我们一起聊聊使用redis来实现分布式锁. 使用场景 库存超卖 比如 5个笔记本 A 看 准备买3个 B 买2个 C 4个 一下单 3+2+4 =9

  • redis分布式锁优化的实现

    对于单机的应用来说,可以直接使用synchronized关键字或着Lock工具类来加锁:但是对于分布式应用我们需要凭借一些工具来实现加锁: 加锁流程通俗来解释就是:         1. 占坑         2. 执行逻辑         3. 填坑 我们可以使用redis来完成占坑这个操作: 基础版加锁 //通过占坑的方式获取锁 boolean lock = redis.setIfAbsent(key, value); if (lock) { //业务逻辑 //填坑 redis.delete

  • 基于redis实现分布式锁的原理与方法

    前言 系统的不断扩大,分布式锁是最基本的保障.与单机的多线程不一样的是,分布式跨多个机器.线程的共享变量无法跨机器. 为了保证一个在高并发存场景下只能被同一个线程操作,java并发处理提供ReentrantLock或Synchronized进行互斥控制.但是这仅仅对单机环境有效.我们实现分布式锁大概通过三种方式. redis实现分布式锁 数据库实现分布式锁 zk实现分布式锁 今天我们介绍通过redis实现分布式锁.实际上这三种和java对比看属于一类.都是属于程序外部锁. 原理剖析 上述三种分布

  • Redis分布式锁的使用和实现原理详解

    模拟一个电商里面下单减库存的场景. 1.首先在redis里加入商品库存数量. 2.新建一个Spring Boot项目,在pom里面引入相关的依赖. <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency> <gr

  • Spring Boot 实现Redis分布式锁原理

    目录 分布式锁实现 引入jar包 封装工具类 模拟秒杀扣减库存 测试代码 方案优化 问题1:扣减库存逻辑无法保证原子性, 问题2:如果加锁失败,则会直接访问,无法重入锁 总结 分布式锁实现 引入jar包 <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> <exclus

  • redis分布式锁RedissonLock的实现细节解析

    redis分布式锁RedissonLock 简单使用 String key = "key-lock"; RLock lock = redisson.getLock(key); lock.lock(); try { // TODO } catch (Exception e){ log.error(e.getMessage(), e); } finally { lock.unlock(); } String key = "key-tryLock"; long maxWa

  • redis分布式锁的实现原理详解

    首先,为了确保分布式锁可用,我们至少要确保锁的实现同时满足以下四个条件: 1.互斥性.在任意时刻,只有一个客户端能持有锁. 2.不会发生死锁.即使有一个客户端在持有锁的期间崩溃而没有主动解锁,也能保证后续其他客户端能加锁. 3.具有容错性.只要大部分的Redis节点正常运行,客户端就可以加锁和解锁. 4.解铃还须系铃人.加锁和解锁必须是同一个客户端,客户端自己不能把别人加的锁给解了. 下边是代码实现,首先我们要通过Maven引入Jedis开源组件,在pom.xml文件加入下面的代码: <depe

  • Redisson实现Redis分布式锁的几种方式

    目录 Redis几种架构 普通分布式锁 单机模式 哨兵模式 集群模式 总结 Redlock分布式锁 实现原理 问题合集 前几天发的一篇文章<Redlock:Redis分布式锁最牛逼的实现>,引起了一些同学的讨论,也有一些同学提出了一些疑问,这是好事儿.本文在讲解如何使用Redisson实现Redis普通分布式锁,以及Redlock算法分布式锁的几种方式的同时,也附带解答这些同学的一些疑问. Redis几种架构 Redis发展到现在,几种常见的部署架构有: 单机模式: 主从模式: 哨兵模式: 集

随机推荐