浅谈ROC曲线的最佳阈值如何选取

为了获取ROC曲线的最佳阈值,需要使用一个指标--约登指数,也称正确指数。

借助于matlab的roc函数可以得出计算。

% 1-specificity = fpr
% Sensitivity = tpr;
[tpr,fpr,thresholds] =roc(Tar',Val');
RightIndex=(tpr+(1-fpr)-1);
[~,index]=max(RightIndex);
%
RightIndexVal=RightIndex(index(1));
tpr_val=tpr(index(1));
fpr_val=fpr(index(1));
thresholds_val=thresholds(index(1));
disp(['平均准确率: ',num2str((RightIndexVal+1)*0.5)]);
disp(['最佳正确率: ',num2str(tpr_val)])
disp(['最佳错误率: ',num2str(fpr_val)])

至此计算结束了。

补充拓展:利用阈值分割目标图像

一.全局阈值

方法一:OTSU方法

otsu法(最大类间方差法,有时也称之为大津算法)使用的是聚类的思想,把图像的灰度数按灰度级分成2个部分,使得两个部分之间的灰度值差异最大,每个部分之间的灰度差异最小,通过方差的计算来寻找一个合适的灰度级别来划分。 所以可以在二值化的时候采用otsu算法来自动选取阈值进行二值化。otsu算法被认为是图像分割中阈值选取的最佳算法,计算简单,不受图像亮度和对比度的影响。因此,使类间方差最大的分割意味着错分概率最小。

选择阈值k,把像素分为两类:

T=graythresh(f)即可实现用方法一计算归一化的阈值。

二.局域阈值

当背景照度不均匀时,全局阈值方法可能失效,此时,用局域变化的阈值函数T(x,y)分割图像f(x,y):

matlab实现程序:

clear all;close all;clc;
I=imread('C:\Users\ASUS\Desktop\图像处理学习文件\大二下\使用阈值分割目标_15\Fig0926(a)(rice).tif');
figure
imshow(I)
title('original image')
k=graythresh(I);
I1=im2bw(I,k);
figure
imshow(I1)
se=strel('disk',10); %产生半径为10的圆盘形结构元素
fo=imopen(I1,se);  %用结构元素对灰度图像进行开运算
figure
imshow(fo)
title('Opened image')
f2=imtophat(I,se); %用原图像减去开运算图像,即对图像进行顶帽运算
figure
imshow(f2,[])  %显示顶帽运算结果
title('Top-hat transformation')
f2=im2double(f2);
T=graythresh(f2);
bw2=im2bw(f2,T); %对顶帽处理后的图像进行阈值处理
figure
imshow(bw2,[])
title('Thresholded top-hat image') %显示阈值处理后的顶帽图像

以上这篇浅谈ROC曲线的最佳阈值如何选取就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 解决ROC曲线画出来只有一个点的问题

    之前在做kaggle比赛时,有个比赛使用AUC来评比的,当时试着画了ROC曲线,结果出来的下图这样的图形.跟平时的ROC曲线差好远,就只有一个点.而别人家的都是很多转折的,为啥我的不一样. 我的图如下: 正常的图(sklearn上面截取的): 思考过后,发现原来: ROC曲线,一般适用于你的分类器输出一个"概率值",即这个样本属于某个类的概率是多少. 如此的话,你就需要设定一个阈值, 大于这个阈值属于正类,小于这个阈值属于负类. 从而,对于这个阈值P0, 就会得到对应的TPR, FPR

  • 浅谈ROC曲线的最佳阈值如何选取

    为了获取ROC曲线的最佳阈值,需要使用一个指标--约登指数,也称正确指数. 借助于matlab的roc函数可以得出计算. % 1-specificity = fpr % Sensitivity = tpr; [tpr,fpr,thresholds] =roc(Tar',Val'); RightIndex=(tpr+(1-fpr)-1); [~,index]=max(RightIndex); % RightIndexVal=RightIndex(index(1)); tpr_val=tpr(ind

  • 浅谈keras中自定义二分类任务评价指标metrics的方法以及代码

    对于二分类任务,keras现有的评价指标只有binary_accuracy,即二分类准确率,但是评估模型的性能有时需要一些其他的评价指标,例如精确率,召回率,F1-score等等,因此需要使用keras提供的自定义评价函数功能构建出针对二分类任务的各类评价指标. keras提供的自定义评价函数功能需要以如下两个张量作为输入,并返回一个张量作为输出. y_true:数据集真实值组成的一阶张量. y_pred:数据集输出值组成的一阶张量. tf.round()可对张量四舍五入,因此tf.round(

  • 浅谈java常用的几种线程池比较

    1. 为什么使用线程池 诸如 Web 服务器.数据库服务器.文件服务器或邮件服务器之类的许多服务器应用程序都面向处理来自某些远程来源的大量短小的任务.请求以某种方式到达服务器,这种方式可能是通过网络协议(例如 HTTP.FTP 或 POP).通过 JMS 队列或者可能通过轮询数据库.不管请求如何到达,服务器应用程序中经常出现的情况是:单个任务处理的时间很短而请求的数目却是巨大的. 构建服务器应用程序的一个简单模型是:每当一个请求到达就创建一个新线程,然后在新线程中为请求服务.实际上对于原型开发这

  • 浅谈keras.callbacks设置模型保存策略

    如下所示: keras.callbacks.ModelCheckpoint(self.checkpoint_path, verbose=0, save_weights_only=True,mode="max",save_best_only=True), 默认是每一次poch,但是这样硬盘空间很快就会被耗光. 将save_best_only 设置为True使其只保存最好的模型,值得一提的是其记录的acc是来自于一个monitor_op,其默认为"val_loss",其

  • 浅谈redis的maxmemory设置以及淘汰策略

    redis的maxmemory参数用于控制redis可使用的最大内存容量.如果超过maxmemory的值,就会动用淘汰策略来处理expaire字典中的键. 关于redis的淘汰策略: Redis提供了下面几种淘汰策略供用户选择,其中默认的策略为noeviction策略: ·   noeviction:当内存使用达到阈值的时候,所有引起申请内存的命令会报错. ·   allkeys-lru:在主键空间中,优先移除最近未使用的key. ·   volatile-lru:在设置了过期时间的键空间中,优

  • 浅谈linux下的串口通讯开发

    串行口是计算机一种常用的接口,具有连接线少,通讯简单,得到广泛的使用.常用的串口是RS-232-C接口(又称EIA RS-232-C)它是在1970年由美国电子工业协会(EIA)联合贝尔系统.调制解调器厂家及计算机终端生产厂家共同制定的用于串行通讯的标准.串口通讯指的是计算机依次以位(bit)为单位来传送数据,串行通讯使用的范围很广,在嵌入式系统开发过程中串口通讯也经常用到通讯方式之一. Linux对所有设备的访问是通过设备文件来进行的,串口也是这样,为了访问串口,只需打开其设备文件即可操作串口

  • 浅谈jvm中的垃圾回收策略

    java和C#中的内存的分配和释放都是由虚拟机自动管理的,此前我已经介绍了CLR中GC的对象回收方式,是基于代的内存回收策略,其实在java中,JVM的对象回收策略也是基于分代的思想.这样做的目的就是为了提高垃圾 回收的性能,避免对堆中的所有对象进行检查时所带来的程序的响应的延迟,因为jvm执行GC时,会stop the word,即终止其它线程的运行,等回收完毕,才恢复其它线程的操作.基于分代的思想是:jvm在每一次执行垃圾收集器时,只是对一小部分内存 对象引用进行检查,这一小部分对象的生命周

  • 浅谈php(codeigniter)安全性注意事项

    1.httponly session一定要用httponly的否则可能被xxs攻击,利用js获取cookie的session_id. 要用框架的ci_session,更长的位数,httponly,这些默认都配好了. 不要用原生的phpsession,而要用ci_session.ci_session位数更长. 如果要用原生的session,应该这样设置(php.ini): session.sid_length //sid的长度,这里要加长,默认的太短了 session.cookie_httponl

  • 浅谈Spring单例Bean与单例模式的区别

    Spring单例Bean与单例模式的区别在于它们关联的环境不一样,单例模式是指在一个JVM进程中仅有一个实例,而Spring单例是指一个Spring Bean容器(ApplicationContext)中仅有一个实例. 首先看单例模式,在一个JVM进程中(理论上,一个运行的JAVA程序就必定有自己一个独立的JVM)仅有一个实例,于是无论在程序中的何处获取实例,始终都返回同一个对象,以Java内置的Runtime为例(现在枚举是单例模式的最佳实践),无论何时何处获取,下面的判断始终为真: // 基

  • 浅谈Matplotlib简介和pyplot的简单使用——文本标注和箭头

    在使用pyplot画图的时候,有时会需要在图上标注一些文字,如果曲线靠的比较近,最好还能用箭头指出标注文字和曲线的对应关系.这里就介绍文字标注和箭头的使用. 添加标注使用pyplot.text,由pyplot或者subplot调用.下面是可以选择的参数, text(tx,ty,fontsize=fs,verticalalignment=va,horizontalalignment=ha,...) 其中,tx和ty指定放置文字的位置,va和ha指定对其方式,可以是top,bottom,center

随机推荐